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Abstract

We introduce an abstract model of exact learn-
ing via queries that can be instantiated to all the
query learning models currently in use, while be-
ing closer to them than previous unifying attempts.
We present a characterization of those Boolean
function classes learnable in this abstract model,
in terms of a new combinatorial notion that we
introduce, the abstract identification dimension.
Then we prove that the particularization of our no-
tion to specific known protocols such as equiva-
lence, membership, and membership and equiv-
alence queries results in exactly the same com-
binatorial notions currently known to character-
ize learning in these models, such as strong con-
sistency dimension, extended teaching dimension,
and certificate size. Our theory thus fully unifies
all these characterizations. For models enjoying a
specific property that we identify, the notion can
be simplified while keeping the same characteri-
zations. From our results we can derive combina-
torial characterizations of all those other models
for query learning proposed in the literature. We
can also obtain the first polynomial-query learning
algorithms for specific interesting problems such
as learning DNF with proper subset and superset
queries.

1 Introduction

The main models of exact learning via queries were intro-
duced by Angluin [1]. In these models, the learning algo-
rithm obtains information about the target concept asking
queries to a teacher or expert. The algorithm has to output
an exact representation of the target concept in polynomial
time.

A main issue in exact learning is to decide whether a
class is learnable with a polynomial number of queries re-
gardless of the computation time needed between one query
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and the next. If this is not the case, then we do not need
to dedicate any extra effort to obtain a polynomial time al-
gorithm. There have been various ways of addressing this
problem for different types of queries [15, 16, 2, 8, 9, 12, 14,
3, 4, 11, 5]. However, none of them obtained a uniform com-
binatorial characterization, applicable to all query learning
protocols, of the number of queries needed to learn, in a sim-
ilar way to the Vapnik-Chervonenkis dimension in the PAC
learning model. This paper presents a dimension that can be
seen as the VCdim brother for the exact learning setting.

We now explain the chain of results that led to the present
paper. A combinatorial notion, called approximate finger-
prints, turned out to characterize precisely those concept
classes that can be learned from polynomially many equiv-
alence queries of polynomial size [2, 8]. The essential in-
tuition behind that fact is that the existence of queries that
shrink the number of possibilities for the target concept by
an inverse polynomial factor is not only clearly sufficient,
but also necessary to learn: if no such queries are available
then adversaries can be designed that force any learner to
spend too many queries in order to identify the target. This
intuition can be fully formalized along the lines of the cited
works; the formalization can be found in [11].

Hellerstein et al. [14] (see also Hegedüs [12]) gave
a beautiful characterization of the learnability of a repre-
sentation class from membership and equivalence queries.
They introduced the notion of polynomial certificates for a
representation classR and proved thatR is polynomially
learnable from equivalence and membership queries iff it
has polynomial size certificates. They also prove that, for
projection-closed classes, the teaching dimension introduced
previously by Goldman and Kearns [9] characterizes learn-
ability from membership queries. By broadening the notion
into the extended teaching dimension, sort of a maximum be-
tween teaching dimension and certificate size, Hegedüs [12]
characterizes learnability from membership queries without
the projection-closed condition.

In [5], a quantitative analysis of certificates is presented,
yielding the consistency dimension (or certificate size), and
obtaining a precise characterization in such terms of the
number of queries needed to learn. A related notion, the
strong consistency dimension, is introduced and proved to
characterize learning from just equivalence queries, in a
manner quite different (and also simpler to handle) than the
approximate fingerprints.

Here we move into a somewhat more abstract frame-
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work, and prove that all three concepts, strong consistency
dimension from [5], certificates from [14], and extended tea-
ching dimension from [12], are just three incarnations of the
same abstract phenomenon. Indeed, we characterize rather
tightly in our abstract framework the number of queries
needed to learn by means of our new combinatorial concept
of abstract identification dimension (AIdim), and prove that
its instantiation to each of the three models mentioned coin-
cides with the known combinatorial dimension for the corre-
sponding model; but, likewise, it yields combinatorial char-
acterizations of learning from, e.g., subset queries, or each of
the models proposed in [1], or projective equivalence queries
from [13]. We also study some cases in which a natural but
nontrivial property of the learning protocol allows us to sim-
plify the characterization.

As a bonus, the understanding of how a learning algo-
rithm may work for these protocols yields the first algorithms
for learning DNF from proper subset and superset queries, or
from proper projective equivalence queries, that we describe
in Section 5. A previous work [6], showed the existence of an
algorithm that learns DNF with subset and superset queries;
but the queries areimproper.

2 Notation and the abstract setting for exact

learning

We assume familiarity with the exact learning model via
queries. We focus on exact learning of Boolean functions,
as an extremely basic form of knowledge. We fix all along
the papern as the number of variables. A Boolean function
of arityn is a function fromf0; 1gn! f0; 1g. The set of all
Boolean functions is denoted byB

n

.
An elementx of f0; 1gn is called anassignment. A

pair (x; b), whereb 2 f0; 1g is a binary label, is called
example for function f 2 B

n

if f(x) = b. A sample,
also called apartial function or partially defined concept,
is a collection of examples for some functionf 2 B

n

,
and can be seen equivalently as a function fromf0; 1gn

to f0; 1; ?g, where “?” stands for “undefined”. The set of
all samples onn variables is denoted bySample

n

. Note
thatB

n

� Sample
n

. A samplea is said to beconsistent
with sample b, denoteda v b, if a(x) = b(x) whenever
a(x) 6= ?. This notation is extended toS v H, for sets of
samplesS;H � Sample

n

, if (8a 2 S)(9b 2 H)(a v b).
Observe that fora 2 Sample

n

andF � B

n

, a 6v F (with
strict notationfag 6v F ) means that no function fromF is
consistent witha. For a samplea 2 Sample

n

, a+ denotes
the setf(x; 1)

�

�

x 2 f0; 1g

n

; a(x) = 1g anda� is the set
f(x; 0)

�

�

x 2 f0; 1g

n

; a(x) = 0g. We denote bykXk the
cardinality of setX and byA � B the join between setsA
andB (A� B = f(0; a) : a 2 Ag [ f(1; b) : b 2 Bg).

2.1 An abstract setting for queries and answers

In our abstract setting, queries are atomic objects. Answers
provide some partial knowledge of the target. Since our
target concepts are always Boolean functions, we assume
that such partial knowledge is always modeled as the values
of the target function on a subdomain; thus, each answer
is just a partial Boolean function (or: a sample) that is a
subfunction of the target (or: that is consistent with it). The

queries that give this kind of answers are sometimes called
example-based queries (see [9], for example).

Thus, starring any abstract learning protocol we have
three participants: the setQ of queries, the set of all Boolean
functionsB

n

of some arityn, and the set of all possible
answers, namely all thepartial Boolean functions of the
same fixed arityn. Since the set of all Boolean functions
and the arityn will be constants in our discourse, and the
set of answers will be specifically defined by each learning
protocol, we only write explicitly the dependence of the
protocol inQ. A protocolProtocol(Q) is a subset of

fhq; f; ai

�

�

q 2 Q; f 2 B

n

; a v fg

For instance, if we want to talk about learning with the
usual equivalence queries with hypothesis coming from a
subsetH � B

n

, we defineProtocol
�

(H) as the set

fhh; f; hi

�

�

h 2 H; f 2 B

n

; h � fg

[

fhh; f; ai

�

�

h 2 H; f 2 B

n

; a 2 (f

�

� h

�

) [ (f

+

� h

+

)g

where the first set corresponds to YES answers and the
second to counterexamples. In a similar way we can define
the protocol for some of the other queries defined in [1]:

� For membership queries onM � f0; 1g

n the set
Protocol

2

(M ) is fhx; f; (x; f(x))i
�

�

x 2M; f 2 B

n

g

� For membership queries on a setM � f0; 1g

n and
equivalence queries on a setH � B

n

the set
Protocol

2;�

(M �H) isProtocol
�

(H)�Protocol
2

(M )

� For subset queries on a classH � B

n

the set
Protocol

�

(H) is

fhh; f; h

+

i

�

�

h 2 H; f 2 B

n

; h

+

� f

+

g

[

fhh; f; ai

�

�

h 2 H; f 2 B

n

; a 2 f

�

� h

�

g

� For superset queries on a classH � B

n

the set
Protocol

�

(H) is

fhh; f; h

�

i

�

�

h 2 H; f 2 B

n

; h

�

� f

�

g

[

fhh; f; ai

�

�

h 2 H; f 2 B

n

; a 2 f

+

� h

+

g

� For both subset onA � B

n

and superset queries on
B � B

n

, the set Protocol
�;�

(A� B) is
Protocol

�

(A) � Protocol
�

(B).

We need to impose some conditions on the protocol to
capture the notion of exact learning. First, we will force
that the protocol has legitimate answers for every allowed
query under every Boolean function. Second, we will
include a “fair play” condition, namely, answers give no
extra information beyond what we intend to give with them.

Thus, anabstract learning protocol P = Protocol(Q),
from now on aprotocol, must fulfill the followingconditions:



250

1. Completeness For eachq 2 Q andf 2 B
n

, there is at
least onea v f such thathq; f; ai 2 P . In words, all
queries must have at least one answer.

2. Fair-play If hq; f; ai 2 P anda v h for some other
h 2 B

n

, thenhq; h; ai 2 P .

The fair play condition will be central to all of our work.
We will find the proofs repeatedly resorting to that condition.
Observe that if it does not hold for somehq; f; ai andh, then
the answera to queryq would provide side information,
allowing the learner to discard a targeth even though it is
consistent with the answera received.

In some definitions we will be locally interested in
consideringanswering schemes. We say thatT � P is
an answering scheme for a protocolP whenT fulfills the
completeness condition. Note that the protocolP is also an
answering scheme. For an answering schemeT , we denote
by T

f

(q) = fa

�

�

hq; f; ai 2 Tg, the set of potential
answers to queryq under functionf , and byT f

= fa

�

�

9q 2 Q hq; f; ai 2 Tg, the set of all potential answers under
functionf , which coincides with

S

q2Q

T

f

(q). The set of all
answering schemes of a protocolP is denoted byT (P ).

2.2 Exact learning

We use a generalization of the exact learning model via
queries of Angluin [1]. A teacher answers with respect to
f 2 B

n

and usingP = Protocol(Q) if for each query
q 2 Q, it outputs somea 2 P

f

(q). A function class
C � B

n

is learnable withd queries underP = Protocol(Q)

if there exists an algorithmA such that for anyf 2 C and
for any teacherB that answers with respect tof usingP ,
the only remaining function inC that is consistent with the
answers received after at mostd interactions isf . For a class
C � B

n

and a protocolP = Protocol(Q) we define the
learning complexity, LC(C;P ), as the smallestd such that
C is learnable withd queries underP .

We define the notion of a version space that will be
useful for the learning algorithms that we use in all the paper.
At any intermediate stage of a query-learning process, the
learner knows (from the teacher’s answers received so far) a
set of samplesS for the target concept. LetC be the target
class. Theversion space V is the set of all concepts from
C which are consistent with all samples inS. These are all
concepts being still conceivable as target concepts.

A fully general, rather simple way of extracting a com-
binatorial parameter from an abstract learning protocol isto
use a chain of alternating quantifiers of queries and answers.
We describe it here, as a way of introducing the idea, and
also for the sake of comparison with the much nicer “flat”
version we will describe in the next section; it will be also
useful for technical purposes in a later proof.

Given a classC � B

n

and a protocolP = Protocol(Q),
theugly dimension, Udim(C;P ), is the minimum integerd
such that for anyf 2 B

n

(not just inC!)

(9q

1

2 Q)(8a

1

2 P

f

(q

1

)) : : : (9q

d

2 Q)(8a

d

2 P

f

(q

d

))

(kfc 2 C

�

�

fa

1

; : : : ; a

d

g v cgk � 1)

if no suchd exists then Udim(C;P ) =1.
Now, using fully standard techniques, we can easily

prove the following theorem.

Theorem 1 For any class C � B

n

and any protocol P =

Protocol(Q)

Udim(C;P ) � LC(C;P ) � Udim(C;P )dlog kCke

Proof If Udim(C;P ) > k then there existsf 2 B
n

such that

(8q

1

2 Q)(9a

1

2 P

f

(q

1

)) : : : (8q

k

2 Q)(9a

k

2 P

f

(q

k

))

(kfc 2 C

�

�

(fa

1

; : : : ; a

k

g v c)gk > 1)

which describes an adversary that can force any learner to
make more thank queries.

On the other side, assume Udim(C;P ) � k and letV
be the version space in an intermediate step of the learning
algorithm that we are now describing (initiallyV = C).
Let f

V

be the majority function onV, i.e. f

V

(x) = 1

if more than 1

2

of the functions inV classify x as 1, or
f

V

(x) = 0 otherwise. The bound on Udim(C;P ) promises
that there exists a queryq

1

such that for all answersa
1

labelled according tof
V

, and so on and so forth, there is
at most one function inC that is consistent with all those
answers. Therefore we run the process of askingq

1

: : : q

k

(q
i+1

depends on the previous answers). If all answers are
consistent withf

V

then, by the fair play property, they all
belong toP f

V and there is only one function inC consistent
with them, the target. Otherwise, at least1

2

of the functions
in V are discarded and we start again withV half the size as
before. This process is repeated at mostdlog kCke times.2

In the next section we present a nicer dimension that
does not need alternating quantifiers and also gives an
approximation (in the same sense as Theorem 1) to the
number of queries needed to learn.

3 The abstract identification dimension

Given a target classC � B

n

and a protocolP = Protocol(Q),
we define theabstract identificationdimension, AIdim(C;P ),
as the minimum integerd such that

(8f 2 B

n

) (8T 2 T (P )) (9S � T

f

)

(kSk � d ^ kfh 2 C

�

�

S v hgk � 1)

If no such integer exists then AIdim(C;P ) =1.
That is, no matter what Boolean function and answering

scheme are chosen there exists some set of at mostd answers
such that at most one function in the target class is consistent
with those answers.

The following lemma will be central in the proof of our
main result in this section and is interesting in its own right.

Lemma 2 Let C � B

n

, D � C such that kDk > 1,
P = Protocol(Q), AIdim(C;P ) = d and f be any function
in B

n

. There exists q 2 Q such that for any a 2 P

f

(q),

at least
kDk�1

d

functions from D are inconsistent with some
assignment in a.

Proof For the sake of contradiction suppose that for eachq 2

Q there exists somea
q

2 P

f

(q) such that less thankDk�1
d

functions are inconsistent with some assignment ina

q

. Then
we define an answering schemeT such thatT f

(q) = fa

q

g.
Now for anyS � T

f such thatkSk � d there are less than
d(kDk�1)

d

functions inconsistent with some assignment inS
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which implies that there must be at least two functions inD

that are consistent withS. This contradicts AIdim(C;P ) =

d. 2

Our main contribution of this section is the following
characterization:

Theorem 3 For any concept class C � B

n

and any proto-
col P = Protocol(Q),

AIdim(C;P ) � LC(C;P ) � AIdim(C;P )dln kCke

Proof We will start showing that if AIdim(C;P ) > k then
any learning algorithm must ask more thank queries. For
the sake of contradiction suppose that there is an algorithm
A that learnsC asking at mostk queries. Letf andT be the
Boolean function and the answering scheme such that

(8S � T

f

)(kSk � k) kfh 2 C

�

�

S v hgk > 1)

obtained by negation of the definition of AIdim.
Now we answer all queries fromA usingT . After k

interactions, A knows a set of given answersS

A

� T

f , and
by the choice ofT andf , there exist two different functions
in C that are consistent with all assignments inS

A

. This
contradicts the assumption onA. Observe that even though
f is not necessarily inC it can be claimed that the answers
were given according to one of the two surviving functions
fromC because of the fair play property.

Now we show the upper bound. Assume AIdim(C;P ) =

k > 1 (if AIdim (C;P ) = 1 the Theorem follows easily). Let
V be the version space consisting of functions inC that are
consistent with the answers received so far (initiallyV = C).
Let f

V

be the majority function onV. Now we make the
query whose existence is guaranteed by Lemma 2. If the
answer is inconsistent withf

V

then at least1
2

of the functions
in V are removed, otherwise the answer is inP f

V (because
of the fair play property) and therefore Lemma 2 ensures that
at leastkVk�1

k

functions fromV are inconsistent with some
assignment in the answer received.

Next we compute the number of rounds that we need to
reduce the number of surviving candidates to 1. LetS(r)

be the number of surviving functions (the cardinality ofV)
after r queries. Clearly,S(0) = kCk and S(r + 1) �

S(r)(1�

1

k

)+

1

k

. This recurrence has the following solution

S(r) � kCk(1�

1

k

)

r

+

1

k

r�1

X

i=0

(1�

1

k

)

i

:

Observe that for anyr the second term is always smaller than
1, so it is enough to find the smallestr that makes the first
term smaller or equal than 1. An easy counting argument
shows that forr = ddlnkCke, S(r) < 2, which concludes
the proof. 2

Next we show a necessary and sufficient condition for
AIdim(C;P ) being1.

Theorem 4 For anyC � B

n

and for anyP = Protocol(Q),
AIdim(C;P ) 6= 1 if and only if for all f; g 2 C, such that
f 6= g there exists q 2 Q, P f

(q)\P

g

(q) = ;. Furthermore,
if AIdim(C;P ) 6=1 then AIdim(C;P ) � kCk � 1.

Proof Suppose that for allf; g 2 C, f 6= g, there exists
someq 2 Q such thatP f

(q) \ P

g

(q) = ;. Then it is easy
to design an algorithm that makes at mostkCk � 1 queries:
it takes a pair of functions fromC, asks the separating query
and for any answer of the teacher at least one of the two
functions is discarded (again by the fair play). This implies
that AIdim(C;P ) � kCk � 1 because of Theorem 3.

Conversely, assume that there existf; g 2 C, f 6= g

such that for allq 2 Q, P f

(q) \ P

g

(q) 6= ; and call those
witnesses of the nonempty intersectiona

f;g;q

. Let T be an
answering scheme such thatT

f

(q) = fa

f;g;q

g. Observe that
for all S � T

f both f andg are consistent withS which
implies that AIdim(C;P ) =1. 2

We prove now that AIdim(C;P ) corresponds with the
dimension introduced in [5] for the case of equivalence
queries: the strong consistency dimension. For a target class
C � B

n

and a classQ (C � Q � B

n

) of hypothesis for
the equivalence queries, thestrong consistency dimension,
scdim(C;Q), can be written as the minimum integerd such
that

(8g 2 Sample
n

)(g 6v Q) (9S v g)(kSk � d ^ S 6v C))

The following result relates, rather tightly, both dimen-
sions.

Theorem 5 For anyC � B

n

and protocolP = Protocol
�

(Q)

such C � Q,

AIdim(C;P ) � scdim(C;Q) � AIdim(C;P ) + 1

Proof Let d
s

= scdim(C;Q) and AIdim(C;P ) = d

a

.
Observe that any sampleg 6v Q provides with all the
information needed to build an answering scheme in the case
of equivalence queries.

For the first inequality, letf be any function fromB
n

.
There are two cases: (a)f 2 Q and (b)f 2 B

n

�Q. In case
(a) one single answer suffices to rule out all but one functions
in C, namely the unique answer tof itself provides allf as
answer and only one function can be consistent with that. For
case (b) consider any answering schemeT for f . Observe
thatT f can be seen as a sampleg v f such thatg 6v Q. We
use the scdim(; ) machinery:(9S v g)(kSk � d

s

^S 6v C)

which implies thatd
s

� d

a

.
For the second inequality letg 2 Sample

n

be such that
g 6v Q (and thereforeg 6v C). Now consider any total
functionf in B

n

such thatg v f and an answering scheme
T such thatT f

v g. Now we know that there exists some
S � g, of size at mostd

a

such that at most one function inC
is consistent with it. If there is one suchc 2 C we add one
more example from(g+ � c

+

) [ (g

�

� c

�

) to S and then
rule out all possible functions fromC. 2

The next section will prove that, under an additional con-
dition onP , the definition of AIdim(C;P ) can be simplified,
and will show how it corresponds to known characterizations
of other learning protocols.

4 Enforcing answers

Many learning protocols (but not all, the most notable ex-
ception being equivalence queries) have the following prop-
erty: for each potential answer (in our abstract sense), there
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is some query that enforces exactly that answer. A simple
example is related to membership queries: an answer con-
sisting of a labeled example (or: sample of size 1) can be
taken as counterexample as one among many answers to an
equivalence query, but is the only possible answer to a mem-
bership query. The purpose of this section is to show that
it is exactly this property the key to the differences between
known characterizations of query learning protocols.

We say that the abstract learning protocolP has the
enforcing answers property if, for eachhq; f; ai 2 P , there
is a queryq0 such thatP f

(q

0

) = fag. That is, for each
potential answer, some possibly different query forces it as
the only authorized answer.

Our main result of this section says that, under this ex-
tra condition, one can dispose of considering all answering
schemes in the definition of abstract identification dimen-
sion. We define theenforcing abstract identification dimen-
sion, EAIdim(C;P ), as the smallest integerd such that

(8f 2 B

n

)(9S � P

f

)(kSk � d^kfh 2 C

�

�

S v hgk � 1)

If there is no suchd then EAIdim(C;P ) =1.

Theorem 6 Let C � B

n

and P = Protocol(Q). If P has
the enforcing answer property then,

EAIdim(C;P ) = AIdim(C;P ) = Udim(C;P )

Proof Clearly EAIdim(C;P ) � AIdim(C;P ) becauseP
is itself an answering scheme. It is also easy to see that
AIdim(C;P ) � Udim(C;P ). Observe that the two previous
facts are independent of the enforcing answers property.

To prove Udim(C;P ) � EAIdim(C;P ) we need the
enforcing answers property. Note that EAIdim(C;P ) = d

can be interpreted as follows: for anyf 2 B

n

, d answers,
fa

1

; : : : ; a

d

g � P

f , suffice to eliminate all but one functions
from C. Since any answera

i

has a queryq
i

such that
P

f

(q

i

) = fa

i

g, then for anyf 2 B
n

(9q

1

2 Q) : : : (9q

d

2 Q)(8a

1

2 P

f

(q

1

)) : : : (8a

d

2 P

f

(q

d

))

(kfc 2 C

�

�

fa

1

; : : : ; a

d

g v cgk � 1)

and therefore, Udim(C;P ) � d. 2

One may wonder whether the gap ofdlog kCke in The-
orem 3 could be improved. The next easy to prove theorem
shows that this is not so easy for general classes and proto-
cols, since there are examples of having the equality on both
ends of the gap. LetSING

n

be the class of singleton func-
tions onn variables.

Theorem 7 Let n be any positive integer,
P = Protocol

2

(f0; 1g

n

) and Q = Protocol
�

(B

n

). Then

AIdim(SING
n

; P ) = LC(SING
n

; P )

and
LC(B

n

; Q) = AIdim(B

n

; Q) log kB

n

k:

The simplification introduced by Theorem 6 allows us to
prove that the abstract identification dimension generalizes
two more characterizations of learning protocols: the certifi-
cate size for membership and equivalence queries, and the
extended teaching dimension for just membership queries,

in the same way as we proved in the previous section that it
generalizes the strong consistency dimension for equivalence
queries.

The certificate size in [14] (orconsistency dimension
in [5]) of a target classC � B

n

and a hypothesis class
H � B

n

, cdim(C;H), is the smallest integerd such that

(8f 2 B

n

)(f 6v H ) (9s v f)(ksk � d^ s 6v C))

or1 if no suchd exists.

Theorem 8 For any C;H � B

n

, C � H, and P =

Protocol
2;�

(f0; 1g

n

�H),

AIdim(C;P ) � cdim(C;H) � AIdim(C;P )+ 1

Proof The proof follows similar steps to the proof of Theo-
rem 5. 2

Theextended teaching dimension [12] (see also [14]) of
some classC � B

n

, etdim(C), is the smallest integerd such
that
(8f 2 B

n

)(9s v f)(ksk � d ^ kfc 2 C

�

�

s v cgk � 1)

or1 if no suchd exists.
The following theorem is immediate.

Theorem 9 For any C � B

n

and P = Protocol
2

(f0; 1g

n

),
AIdim(C;P ) = etdim(C)

We end this section with an example showing that
EAIdim(C;P ) is not valid in general as an approximation
of the number of queries needed for exact learning when the
enforcing answers property does not hold. LetC be the class
of k-term monotone DNF, for some constantk > 1, andP
be Protocol

�

(C). It is easy to see that EAIdim(C;P ) �

(k+1)(n+1) but AIdim(C;P ) is not bounded by any poly-
nomial inn (see [7], for example).

5 Applications

Our setting immediately provides with new combinatorial
characterizations of all other popular learning protocolsand
with the first exact learning algorithm for DNFs that uses
polynomially many queries that are DNFs of polynomial
size. We start, as an example, with subset queries and then
move to the algorithms for learning DNF formulas.

5.1 Subset queries

We need some definitions specific for subset queries. For a
sampleg 2 Sample

n

, we say thatg is valid for H � B

n

if and only if 8h 2 H eitherh+ v g or h+ � g

+

6= ;.
Thecovering cost of a sampleg with H is covcost

H

(g) =

kg

�

k + minfj

�

�

(9h

1

: : :h

j

)(

S

h

+

i

= g

+

)g. If such
j does not exist then covcost

H

(g) = 1. We denote by
covdim(C;H) the smallest integerd such that

(8g 2 Sample
n

)(g is valid for H ) (9s v g)

(covcost
H

(s) � d ^ kfc 2 C

�

�

s v cgk � 1))

or1 if no suchd exists.

Theorem 10 For any pair of classes C;H � B

n

and P =

Protocol
�

(H), AIdim(C;P ) = covdim(C;H).
Proof It is enough to observe that a sample being valid for
H corresponds to the notion of answering scheme and that
the covcost() function measures the minimum number of
answers to subset queries contained in a sample. 2
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5.2 Learnability of DNF formulas and related classes

All the intuitions gleaned through this work have more spe-
cific applications, in particular by illuminating how query
learning algorithms might proceed using the powerful subset
and superset queries, or the less known projective equiva-
lence queries of [13].

We need some more definitions. A partial assignment
� is a word fromf0; 1; ?gn. A complete assignmentx 2
f0; 1g

n satisfies a partial assignment� if they coincide in
the positions where� is not ?. The hypercube of a partial
assignment� is the set of all complete assignments that
satisfy�. We denote byt(�) the term that, when applied to
a complete assignmentx, evaluates to 1 ifx satisfies� and
to 0 otherwise and byc(�) the clause such thatc(�) = �

t(�).
A functionf 2 B

n

projected with respect to� is denoted by
f

�

. The functionf
�

is equal tot(�) ^ f . Observe that our
definition is not the projection of [14] because the number of
variables is not reduced.

The following theorem states the first known exact learn-
ing result for DNF formulas that uses a polynomial number
of queries of polynomial size that are also DNF formulas.

Theorem 11 The class of DNF formulas with at most m
terms and over n variables is learnable with 2nmdlog 3e

subset and superset queries that are DNF formulas with at
most 2m+ n terms.

Proof Assume, w.l.o.g, thatm � 1. Let G be the class
of DNF formulas with at most2m terms,H be the class
of DNF formulas with at most2m + n terms,C be the
class of DNF formulas with at mostm terms andP =

Protocol
�;�

(H �H). Observe thatC � G � H. Since
the enforcing answers property applies, it is enough to show
that EAIdim(C;P ) = 2 (which coincides with AIdim(C;P )

because of Theorem 6) and the theorem follows because of
Theorem 3 and the fact thatlogkCk � nmdlog 3e.

Consider any functionf 2 B

n

. There are two cases:
(a) f 2 G and (b)f 62 G. In case (a) the answers inP f

to two queries suffice to discard all but one functions inB

n

,
namely the answers to subset onf and superset onf . In case
(b) we use a projection trick: we projectf according to some
partial assignment� (initially � = ?

n) while for any variable
v not yet projected there exists a Boolean valueb such that
f

�[v b

62 G, we choose any such variable and value and
continue projecting. Since bothSING

n

and the constant 0 are
in G we have to reach some point where we have projected
according to some partial assignment� such thatf

�

62 G

and there exists some variablev such that bothf
�[v 0

and
f

�[v 1

are inG. Now, becausef
�

= f

�[v 0

_ f

�[v 1

, at
least one of the two projections must be outsideC, otherwise
f

�

would be inG. Therefore there existsb 2 f0; 1g such that
f

�[v b

62 C. Let � be�[ v  b. Now, the unique answers
according toP f , on subset off

�

and superset off
�

_ c(�)

(that both belong toH) give all the hypercube that satisfies
� labelled according tof . Sincef

�

62 C those examples
discard all functions fromC becauseC is projection closed.
2

There is an algorithm in [6] that learns DNF with
improper subset and superset queries in expected polynomial
time, and therefore using an expected polynomial number of
queries.

Now we prove a similar result using the less known
projective equivalence queries from [13]. A projective
equivalence query receives as input a partial assignment�

and a hypothesish 2 B

n

and the answer is the hypercube
that satisfies� if h and the target are consistent there or some
example in that hypercube witnessing the fact that they do
not coincide.

Using similar arguments to the proof of Theorem 11 we
can prove the following result.

Theorem 12 The class of DNF formulas with at most m
terms and over n variables is learnable with nmdlog 3e

projective equivalence queries that are DNF formulas with
at most 2m terms.

Proof In this case it can be shown that AIdim(C;P ) = 1. 2

In fact, the only properties of DNFs employed in the
previous results are:

1. If the number of terms needed to representf 2 B

n

in
DNF form is more than2m then for any variablev there
exists a Boolean valueb, such thatf

v b

needs more
thanm terms.

2. Given a Boolean functionf representable as a DNF
with at mostm terms and a clausec onn variables, the
functionf _ c can be represented with at mostm + n

terms.

3. The class ofSING
n

is representable as DNF with at
most 1 term and DNF formulas with at mostm � 1

terms are projection closed.

Since those properties are also satisfied by Decision
Trees, Branching Programs, Decision Lists and Boolean
Formulas (with some minor variations in the numbers that
are still within a polynomial), the same result holds for them.

Corollary 13 Decision Trees, Decision Lists, Branching
Programs and Boolean Formulas are learnable with a poly-
nomial number of queries of polynomial size both with subset
and superset queries or with projective equivalence queries.
Furthermore, the input of the queries are representations
taken from the same class as the target class (properlearn-
ing).

Observe that subset and superset queries together and
also projective equivalence queries can simulate the mem-
bership and equivalence queries protocol for the classes con-
sidered above. Since for DNF formulas and Decision Trees
it is known that membership queries or proper equivalence
queries do not suffice (see [2, 10]), the case of using both
membership queries and proper equivalence queries (an im-
portant open problem) falls now between the positive results
in this paper with more powerful queries and the negative
results for weaker protocols.
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