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Abstract Xt
We model reinforcement learning as the problem Environment
of learning to control a Partially Observable Mar-
kov Decision Proces®(OMDP), and focus on gra-
dient ascent approaches to this problem. In [3] we
introducedGPOMDP, an algorithm for estimating
the performance gradient off@@MDP from a sin-

gle sample path, and we proved that this algorithm
almost surely converges to an approximation to the r(Xy
gradient. In this paper, we provide a convergence
rate for the estimates produced kiypOMDP, and
give an improved bound on the approximation er-
ror of these estimates. Both of these bounds are in
terms of mixing times of the OMDP.

<D
. g

(<]
L

1
Agent Yt
1 INTRODUCTION Policy: MU

Many control, scheduling, planning and game-playing tasks

can be formulated as reinforcement learning problems, in

which an agent chooses actions to take in some environmentfFigure 1: A partially observable Markov decision process
aiming to maximize a reward function. We can model the (POMDP) controlled by the policy:. The actiond/; deter-

Ut

environment as partially observable Markov decision pro- mine the probabilities of transitions between differeates
cess (POMDP) and formulate these reinforcement learning X:. The MDP ispartially observable because the stat®;
problems as the problem of controlling taR@MDP. is not observed; the observatidhis conditionally indepen-
Figure 1 illustrates ®OMDP, controlled by a policy:. dent, givenX;. The stochastic policy maps from observa-
We assume that there is a finite state spee {1,..., N}, tionsY; to distributions over actions;. Associated with the

representing the distinct states that the environmentatan t ~ State.X; is a reward valuey(X,). The aim is to choose a
a finite control set/, representing all actions that the agent policy to maximize the long term average of the reward.
can choose at each time step, and a finite observatiQy,set
representing all observations that might be presentedeto th
agent.

The evolution of the states depends on the actions. Each
u € Y determines the state transition probabifity(«), that
is, the probability of transition from stateto statej, given
control actionu. Thus, the matrix

The relationship between the observations seen by the
agent and the actions it chooses is defined by the pgalicy
We consider randomized policies, and we assume that the
policy is defined by a vector of parameters. Formallyaa

P(u) = [pij(u)] rameterized randomized policy is a functionu mapping pa-

) ) ) ) rameters) € © C R? and observationg € Y into proba-
is a stochastic matriXy _; p;; = 1fori € {1,... , N}. bility distributions over the controld. That is, for each ob-
For each staté € S, an observatiory € YV is gen-  servationy and parameter vectd, ;(0, y) is a distribution

erated independently according to a probability distitut  over the controls id/. We denote the probability of control
v(7) over observations i). We denote the probability of ¢ under this distribution by, (0, y).

observatiory by v, (¢). In the special case, (i) = é(:), the
observationy is the same as the state, and theMDP is Each staté has an associated rewar@). The aim is to
completely observable. choose the parametef<f the policy so as to maximize the
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long-term average reward, We introduced>POMDP, an algorithm for estimating an ap-
proximation to the gradient (this algorithmis describedén
R e tail in Section 4). The estimates producedBINFORCE
n= TILHQO fE Z R, 1) involve products of the average reward over a sample path
t=0 between visits to a recurrent state and the sum of certain
where R, = r(X;) is the reward associated with the state gradient contributions over that sample path. In contrast,
X, at timet. For simplicity of exposition, we will focus GPOMDP uses products of the instantaneous reward at each
on policies that depend only upon the current observation Stat€, and a sum over the past of exponentially discounted
Y,. However, the results of this paper can easily be ex- gradient contributions. The discount factdr.is a parameter
tended to policies that depend on finite histories of obser- Of the algorithm. The role of this parameter depends on the
vations(Y;, Yi_1, ..., Yi_g). mixing time Of the POMDP. (The mixing time is the time
For each |5a’ram’eter_vect®,r we have a fixed stochastic constant in the exponential convergence of a stochastic pro

policy, so the underlying state of the POMDP evolves as a cess to its stationary distribution—see Section 2 for tHe de
Markov chain with transition probability matrix nition.) We showed in [3] that, under certain assumptions on

thePOMDP, the estimates produced B\POMDP converge

P(9) = [pij(g)]ijzl o almost surely tdvs#, an approximation to the gradient that
A depends on the discount fact®used by the algorithm. The
where approximation error of the algorithm is the size of the differ-
pii (0) = By co(yBumpio,vypis (U). ence between the true gradieévi; and the estimat&;7 to

. . _ _ which the algorithm converges. In [3], we showed that this
We write the parameterized class of stochastic matrices aSapproximation error is small provided that the time conistan

E (;idi‘r{]P(tg;; g g (;?4}-9 DS\r/}eOJ\[/SiIrTJZeM?(rk?/ c[;\ai}r% C(;gre- Talg = 1/(1 — B) is large compared with the mixing time
P g toP (0) by M (6). {Xe, Ve, Ur, B} of the derived Markov chaini/ () (under the assumption

denote the joint stochastic process where the stéteare . » i~ X
generated according (¢), observationg; are generated tr;laé_th_e el)genvalues of the transition probability matnig a
all distinct).

according tav(X:), controlsU; are generated according to In this paper, we give bounds on theimari of
0,Y;) and rewards?, are generated accordingt0X,). W > Ol Wsumation error.
u(, 1) ‘ 9 grOY) the GPOMDP algorithm. The estimation error, which is the

We can view the average reward (1) as a funciji) of d size of the difference between the output of the algorithm

0 € R4 whered are the parameters of the policy. Provide . . . .
the dependence ofon 4 is differentiable, we can compute  21d ItS asymptotic output, arises because the algorithen see
' only a finite data sequence. Our estimation error bounds are

tvhg(g\)/earr;geu?;\?a%adlent ascent method in order to increas in terms of the algorithm’s time constang|q = 1/(1=75)
This approach was pioneered by Williams [11], who in- and the mixing time of a certain stochastic process assatiat

troduced theREINFORCE algorithm for estimating the gra- ~ With thePOMDP. In particular, if this mixing time is-, the

dient inepisodic tasks, for which there is an identified recur- estimation error is of the order

rent state*, and the agent is told when this state is entered. oo

REINFORCE returns a gradient estimate each tithés en- alg

tered. Williams showed that the expected value of this esti- n

mate is the gradient direction, in the case that the number of

steps between visits 1 is a constant. Itis easy to prove the = - "\ 2O give an approximation error bound in terms

stronger result that the expected value of the estimateeis th of a certain mixing time-* of M (), without the restrictive

?Srgg'ggﬁtiegﬁg)v\'hen the number of steps is a random Varlal:’Ieassumption of [3] that the eigenvalues are distinct. We show

Other researchers have investigated algorithms that esti-that the approximation error of the algorithm'’s estimatefis

ignoring log factors, where is the running time of the algo-

mate the gradient of the expected reward [6, 4, 9, 8, 2, 10, 7]. the order *
With the exception of [6], these algorithms are all resgrtt TR
to episodic tasks, or for tasks where the long term average re alg

ward is accurately known. The weakness of approaches thatwheres? is the variance of the rewari, under the station-
are restricted to episodic tasks arises from the reliance onary distribution. These results show that mixing times &f th
the identifiable recurrent state. Although the assumptions  controlledPOMDP provide estimates for both the approxi-
we make in this paper about tH®MDP ensure that ev-  mation error and the estimation error, and suggest that mix-
ery state is recurrent, as the size of the state space iesteas ing time is crucial to the performance of the algorithm. The
we can expect that the expected time between visits will in- results also formalize a natural tradeoff: as the time @onst
crease. Furthermore, the time between visits depends on thef the algorithm gets large (when the paramgtapproaches
parameters, and states that are frequently visited fomihe i  one), the approximation error decreases but the estimation
tial value of the parameters may become very rare as perfor-error increases. This provides insight into the approeriat
mance improves. In addition, in an arbitr&®MDP it may choice of the algorithm’s parametgr
be difficult to estimate the underlying states, and theesfor In Section 2, we describe the assumptions we make about
determine when the gradient estimate should be updated. the controlledPOMDP, and present some definitions and
In [3], we extended Williams’ algorithm to avoid the preliminary results. Section 3 reviews tREINFORCE al-
need for an identifiable, frequently visited recurrentestat gorithm, and shows that the expected value of its estimates
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is correct. Section 4 present®OMDP, and reviews the The following lemma is folklore. (It follows, for exam-
results from [3]. Sections 5 and 6 give bounds on the conver- ple, from the Jordan decomposition theorem—see [5].)

gence rate and approximation error. o
Lemma 6. For distributions P, () on A,

2 ASSUMPTIONS, DEFINITIONS AND drv (P, Q) = 2sup(P(S) — Q(5)),
PRELIMINARY RESULTS 5
. . where the supremum is over all measurable subsets S C X.
We assume that the Markov chaiis(¢) satisfy several as-
sumptions. For a stochastic proce¢s(; } andj < k, we useX}€ to

Assumption 1. For each 6 € ©, the Markov chain M (9) is denote(X;, Xj11,..., Xx), andX?  to denote the infinite
ergodic. sequencé. .., X;_1, X;).

Definition 7. A causal stochastic process { X} taking val-
ues in X is mixing if, for all sequence lengths k, there is a
stationary distribution © on X* such that almost surely the
distribution othH'k_l conditioned on X° _ converges to
o P=n ast — oo.

A stationary distribution of a Markov chain with transi-
tion probability matrix P is a probability distributionr =
[r(1),...,m(N)] over states that satisfies

Assumption 1 implies that eacH(¢) has a unique positive  Definition 8. We say that a stochastic process {X;} is expo-

stationary distribution nentially mixing with time constant (r-mixing for short) if
.. .o to . . 5

w(0) = [7(6,1), ..., (6, N)]/ ’ it is mixing and, for all to, t > 0 and X_°__, the distribution

p' of Xi,4+ conditioned on X'°__ satisfies

and that the sequence of states exhibits exponential conver .
gence to this stationary distribution. We could also allow dov(p', ) <exp(=[t/7]),
aperiodic Markov chains which have a single recurrent ¢class
plus some transient states.

If a gradient method is to be applicable, suitable deriva- ~ When we talk of the mixing time of a Markov chain, we
tives must exist. The following assumption about the param- mean the smallestsuch that the state sequence-sixing.
eterization of the stochastic policies suffices.

where T is the stationary distribution of X,.

Lemma9. If {X,} is T-mixing, then for any predicate ¢ on

Assumption 2. The derivatives, Oy, (0, y) /00y exist for all xn,

ueld,yeY,k=1...dand 6 € © <¢ Xty Xatts oo s Xn-|—nt)|X9 )

This assumption implies that the derivativigs; (6)/ 06y 1 omlnafr) M 1 oLt/7]
existforalld € ©,4,5=1,... Nandk=1,...,d. 5 + 9
Assumption 3. There is a C' < oo such that, for all states 1, F X X)) 00 (X X}
the magnitude of the reward satisfies |r(i)| < C. where 7 is the productdistribution on X™ generated by the

Assumption 4. There isa B < oo such that, for all controls stationary distribution T on X'

u € U, parameter vectors 0 € ©, observations y € Y, and Proof. Consider distribution®;, 1 on a sett; and Ps, 0,
ke {l,... d}, on a setls.
|02 (0,y) /00 | < B drv(P1 x P2, Q1 X (Q2)
pa(@y)
. _ :/ d| Py x Py — Q1 x Qo]
The assumption that the magnitudes of the rewards are X1 XXz
uniformly bounded is quite natural: the agent’s actions can
have only limited consequences. The ratios between deriva- = o d | (Prx Py = Q1 x P2)
tives and action probabilities are features of the clas®tif p Lt
cies that can be bounded by design. — (Q1 X Q2 — Q1 x Py)|
To measure the progress of the state distribution toward
the stationary distribution, we use theotal variation dis- < O d([Pr = Qi x P+ Q1 x |P2 = Q2])
tance. Lt
Definition 5. The total variation distance between two prob- - /Xl d|Py— Qu| + /)(2 d|P2 — Qs

ability distributions P, () on a set X is — Aoy (P, Q1) + drv( Py, Qs).

drv(P.Q) = [P = QI(X), Lemma 6 implies that, for anly), 1]-valued functiony,
where the finite measure |P — Q)| is the absolute difference

between the measures P and Q). (If P and Q) are discrete, /f YdP(x /f )dQ(x dTV(P Q)
|P—Q|(X ) =D vex |P( ) Q(z)|. If they are continuous,
|P—QIX) = [, lp(= ()| dx.) An easy inductive argument implies the result. O
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Algorithm 1 The REINFORCE algorithm.

1: Given:
e Parameterized class of randomized policies
{p(0, )} satisfying Assumptions 2 and 4.

e POMDP which, when controlled by the random-
ized policiesyu (@, -), corresponds to a parameter-
ized class of Markov chains satisfying Assump-
tion 1.

e Start stateXy = 7*.

Observation sequenck,, Yy, ... and reward se-

quenceRy, Ry, ... generated by thEOMDP with

controlsl/y, Uy, . .. generated randomly according
to p(6,Y:), with rewardsR, satisfying Assump-

tions 3.

2: Set_] =0,20 =0, =0,andAy; =0 (Zo, Ag € Rd)

3: for each observatiol;, controlU; do

4: if X; = i* then

5: ti =t

6: Aj+1 A + ]+1 t]+1 T Zs =t;+1 Rz — Aj
7: j=j5+1

8: Zt41 = 0

9: else e, (0.7

100 = R

11:  end if

12: end for

We shall make use of Hoeffding’s inequality:

Theorem 10 (Hoeffding’s Inequality). If the random vari-
ables X1, ..., X, are independent and satisfy X; € [a;, b;],

we have
Pr ( e)
—2e2n

e <%Z?:1(bz’ - az’)z) '
3 WILLIAMS’ REINFORCE ALGORITHM

n

%Z(XZ» —EX;)| >

i=1

The gradient ascent approach to reinforcement learning was

pioneered by Williams [11], who introduc&EINFORCE
(Algorithm 1). Williams showed that the expected value of
the estimates\; returned by this algorithm is the gradient
direction, in the case that the number of steps betweersvisit
to the identified recurrent stafé is a constant. It is easy to
prove the following stronger result.

Theorem 11. Under Assumptions 1, 2, 3, and 4, for each j,

T
1 o
EA]’:VE(T;Rt Xo=1 ),

where T' is the time of the first return to state i*.

Proof. It is easy to see that the expression foy, ; is a re-
cursive computation of the average of the 1 random vari-
ablest, ..., & 41, where
tit1
Rs 2ty
s=t;+1

1

fig) = ————
T
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so we need only compute the expectatiort of= A;. (In
fact, because of the Markov property, the random variables
&; arei.i.d.) Now,

(15 ) o Va0
SES AP

whereT is the time of the first return to stafée. Define
1 &
=72 R
s=0
We shall show by induction that

EA, — VE (R| Xo = i)

-5 (s (g T

- VE(&]5;)

Vo, (Y1)
pu, (Yr)

)
)

aXs—laYs—la Us—laXs)~

Pr(T > s), (2)

where
SS == (XQ,YQ, Uo, e

Clearly, (2)istrue fors = 0. Suppose it is true fog > 0.
Fix any swtabIeS0 (which must have positive probability
and contain n@*s.) Then we can write

53)

= ved s (pxie (U
Y, U
s+1 Vﬂs

)
1
x E
fhs

iy

Ss-l—l)

T-1 Ve
+ Z st,Xs+1( (R Z t SS+1) ’
p t=sq1 Mt

where we have used the abbreviated notgtios purr, (Y3),

vs = vy, (X;), and we have relied on Assumption 2. Tak-
ing theV u, /us outside the expectations in both terms, and
rearranging shows that this is equal to

Vus

E( p E (R|S5th) SO)
T-1 v

+E( (RZ YH Ss“) T>5+1)
i1 Ht

X Pr(T>s+1]S2) .



Using a similar expansion, we have Algorithm 2 The GPOMDP algorithm.

VE (R|53) 1: Given: _ _ N
" e Parameterized class of randomized policies
1 3 . {u(0, )} satisfying Assumptions 2 and 4.
= Z Vs Z Vs | px, i+ (Us)E (5—1-—1 Z Ry So+1) e POMDP which, when controlled by the random-
Y, Us t=1 ized policiesyu (4, -), corresponds to a parameter-

ized class of Markov chains satisfying Assump-

+ 3 pxox (UDE (RIS | + . tﬁ'oen[lo .
Xepr 7t o Arbitrary (unknown) starting statg.
B ¢ Observation sequencs,, Y7,... and reward se-
Z v, Z Is Z px. xop (Us)VE (R|S5T) quenceRo, Ry, ... generated by theOMDP with
Y., U, Xopr 2i* controlsly, Uy, . .. generated randomly according
v B tou(0, ), withthe rewards, satisfying Assump-
:E< Pog (R| S5 53) tion 3.
Fs B 2: Setzp = 0andAy =0 (Zo, Ag € Rd)
+E (VE (RIS;TH)| T > s+ 1) Pr (T > s+ 1|55) . 3:fort=0,...,n; — 1do
Subtracting these equations and taking the expectation ove g Z“ :_ZZ
S5 shows that (2) is true for+ 1. By induction, it is true for 6 end i.:)’l} -
all s > 0. : _
It remains to show that the quantity on the right hand side 7fort=my, .. nv1+ n(zg—yl)do
of (2) goes to zero as gets large. Using Assumptions 1,3 8: 4 = Bz + YHUAT Te)
and 4, it is easy to verify tha VER|| < ¢ for some constant KU, (19’ i)
¢ that depends only of It follows that 9 A=A+ ———[Repriziqr — A
= t—ni+1
IEA; — VER|| < (BRE(T — s|T' > 5) + ¢) Pr(T' > ), 10: end for '
which (under Assumption 1), is no more than a constant 11 fort =mni+mns, ..., ny +ny +ns —1do

12: Zi41 = ﬁzt.
13: A = A+ Req12e4a
14: end for

timesPr(T > s). Since this probability approaches zero
ass gets large, the result is proved. O

Notice that the proof did not rely on the fact thiat is a
function of the stateX; . Indeed, the same proof gives a simi- o _
lar result wher(1/7) Y-, R, is replaced by a bounded ran- State, for anyy, ns, the limit asn, — oo of the estimaten
dom variableR that depends only on the sequence of states produced by this algorithm is almost surely
X, and actiong/;: between visits to the staié. Vsn = 7'V PJg,

4 THE croMDP ALGORITHM whereJs = [J3(1),...,Js(n)] is the vector of expected

discounted future rewards,

_ _ ente > B RXg =i
Algorithm 2 showsGPOMDP, an algorithm for estimating pyt ]
an approximation to the gradient. In fact, Algorithm 2 is a _ . )
slightly modified version of the algorithm presented in [3]. Th€ VectorV is an approximation to the gradient that de-
This algorithm has three distinct phases, which extend for Pends on the parametgrof the algorithm. In the next sec-
n1,ns,n3 time steps. The first phase involves waiting for tion, we prove a (non-asymptotic) bou_nd on the est|n_1at|0n
the controlledPOMDP to mix. The second involves gath-  €MTOrl[A = Vi||o, of theGPOMDP algorithm, as a function
ering gradient information about actions that are takere Th of ny, ny, n3.
third involves waiting for the long term outcomes of the ac-
tions for which the g%adient inforgmation was gathered. (The 5 CONVERGENCE RATE

algorithmin [3] did not include the first and third phase.) I \ve can rewriteA . the estimate produced by thePOMDP

troducing the first and third phases simplifies the analysis, algorithm, progressively expanding terms involving.y.». ,
but it is easy to extend the results to the algorithm presente thenz,, +n,_1, and SO ON Up ta,, 11, and separating terms
1 2— 1 1 !

in [3]. involving distinct gradients’ This gives
Itis easy to see that the algorithm returns g g At g

In [3], we extended Williams’ algorithm to avoid the
need for an identifiable, frequently visited recurrent estat Js(i) =B

na—1 notns—1—t
1

ni+nz+ns .
1 A= — an Rn1 s, 3
S e T (T8 ) ©

t=n1+1
; . L where
Call this valueA. The convergence resultin [3] implies that, _ Vi, (0, Y1)
under Assumptions 1, 2, 3 and 4, starting from any initial Vi= o, (0,Ye)
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This illustrates how the algorithm works: its estimate is a
weighted sum of the gradient®u, (¢, ¥;), which are the

directions in parameter space that lead to a maximal inereas

in the probability of the action&; that were chosen at each

timet¢. These directions are weighted by an estimate of the

value of that action (a discounted sum into the future of the
rewards that followed the actidry). They are also weighted
by 1/u(U:), which ensures that very likely or unlikely ac-
tions are represented fairly in the average.

Proof. Using Equation (3), we have

Each term in the sum (3) depends on the complete se-

guence of future rewards;. However, the dependence

decreases exponentially quickly, so the terms can be accu-

rately approximated by considering a finite window into the
future. To this end, we introduce a modified algorithm (the
k-blocked algorithm), which uses only of the future reward
values. This algorithm returns

ni+ns—1

— > thﬁ Rigor.

t=n1

We assume thdt < nz + 1.

Notice that the estimatd” of the k-blocked algorithm
is an average of- terms, each of which is a function of a
vector

SF = (Vi, Rey1, Rego, .o, Regr) -
Define
k-1
Af =V B Repsta,
s=0
so that
ni+ns—1

o 2 A

t=n1

Because of Assumptions 3 and 4, we have the bound

BC

ARl < .
1AL By

Lemma 12. Under Assumptions 1, 2, 3 and 4, the estimate
A returned by the GPOMDP algorithm and the estimate A*
returned by the k-blocked algorithm satisfy

AF A k
N T
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ok - a
ni+ns—1
= — Z Ve Zﬁ Reysia
2 t=n1
nitnotns—(t+1)
- Z ﬁth-I—s-I—l
s=0
1 nit+ns—1 k—1
<— 3 IVl 8 Repans
t=n s=0
nitnotns—(t+1)
- Z ﬁth-I—s-I—l
s=0
nit+ns—1 nitnotns—(t+1)
< o Z Il Z B | Reys—1]
2 t=n1 s=k
(fork <nz+1)
ni+nztns—(t+1)
< sup ||V sup [ R > B,
t t

s=k

which implies the result. O

A similar proof, plus the ergodic theorem and the asymp-
totic convergence result in [3], give the following result.

Lemma 13.

BC
||E77Aic - Vﬁﬁ” < m5k~

We can now obtain the main result of this section. Recall
thatd is the number of policy parameters.

Theorem 14. If the process
Sf = (Vt, Rt-l—la Rt+2, e ’Rt-l—k)

is T-mixing, s < no, and k < ng + 1, then

2BC
pe (18- Vol > e+ 2255

)

d
< Wt 4

d
%e—ts/ﬂ
—ena(1 — fB)?

4B2(?%s ’

The theorem is an easy consequence of the following the-

orem, applied to the functioa” of the vectors?, together
with Lemmas 12 and 13.

Theorem 15. If {X,} is T-mixing and f : X — [a, b]%,
s < na, then

+ 2sd exp (

and

ni+ns—1
Z J(Xi) = Exf| > X2,
d —eZp
<3 (“‘“”/” #oac e asen (i) )



Proof. Combining Hoeffding'’s inequality (Theorem 10) and Simple manipulations and logarithmic inequalities (see,
Lemma 9 shows that, for army-mixing stochastic process for example, the appendix of [1]) give the following corol-

{X;}andanyf : X — [a,b], lary.
n—1
1 . s X
Pr ( 1 Z F(Xngit) = Enf| > ¢ 0 ) Corollary 16. Suppose that the process
n -
1=0 , Sf: = (vta Rt-l—la Rt+2, s aRt+k3)
1 -1 -2
< 56_“”/ n 7 e~lt/rl 4 2 exp (ﬁ) )] is T-mixing, T < no, and k < ng + 1. Then for
The idea of the rest of the proof is to split the sequence from ny > 27 In(3dn2 /),

ny tony + ny — 1 into m interleaved subsequences, so that
each consecutive element of each of these subsequences S

separated by time steps. Rapid mixing ensures that these nod
subsequences are approximately i.i.d. Suppose at first that ||[A — V5|, = O ( (ﬂ’“ | / In (T))) .
ns = ms for some positive integen. Then —# 2

with probability at least 1 — § (conditioned on X° o)

Equivalently, if

ni+ns—1
Z F(Xi) = Exf|| >e€ X2, 1 4BC
=y k> In ( ) ,
oo —1-p (1 —PB)e
3dn
<Pr3dm<j<ni+s—1: 711227'111( 62),and
B2C?r 9 drB2C*?
1 m—1 o o :Q 762(1—ﬁ)2 hl 762(1—ﬁ)2(5 s
EZf(Xzs-l-])_Eﬂ'f ZE X—oo
o then
Pr(/|A-V >e| X ) <a
<5maxpr(H Zf o —g] sl ) (1A = Vanll, > | X20) <
oo When isSF 7-mixing? Since it is composed &f, and
(5) k subsequent reward values, we expect that if the underlying
where the max is over; < j < n; + s — 1. Now, the union state is rapidly mixing, then so i5f. The following result
bound and Inequallty 4 imply that shows that the mixing time of¥ is not much worse than that
of the underlying Markov chain.
L e
Pr — Z f(Xis+j) —Exf > € Xgoo Lemma 17. If a Markov chain {X.} is T-mixing, then the
m
i=0 co Markov chain (X¢, X¢y1, ..., Xeqr) is 7/-mixing, where
-1 —2¢3m
<d 2 IRl VA TR = . ! )
(2 2 e + 2exp G—a) ' < 7ln(e(k + 1))
Thus, the right hand side of (5) is no more than Proof. The same argument as in the proof of Lemma 9 shows
] ] 02 that if the Markov chain{ X, } is 7-mixing, then the condi-
sd <_6—Ln1/ M= 2= ls/7] L 9exp (Lmz)) , tional distributiorp of (X;, X;41,..., X¢yx), givenX’_,
2 (b—a) has
Now, for any positive integes, if s does not divide:,, we /
can use a similar argument, but some of the subsequences drv(p, ) < (k+1)exp (— {—J)
in (5) will be of lengthm; = |n2/s] and some of length T
_— [
m; = [na/s]. Butfors < ns, ~ exp (_ {——ln(k’—l—l)J)
ny/(2s) < [n2/s| <nafs < [nafs] <nafs+1 < 2nyfs. T
[
So the same argument shows that < _ )
o —eXp( L<1+ln<k+1>>D
Z FX0) = Bof| > el X2, =
' S ~ Since the stochastic process
€
< smaxPr ( Z f ZS+] Eﬂ'f Z 5 Xgoo) Sf = (Vt,RH_l, . ,Rt+k),
i=0 50 N o o .
d d 2 conditioned or{Xy, ..., X¢yx), isiid., thisimplies that the
< 2e=tma/rl 4 2% = 1s/7) 4 9sdexp (677122) , mixing time of S¥ is never more than the mixing time of
2 4(b—a)?s the Markov proces$X;, X;11,..., X;1x). Together with
where the maxisovei; < j <n; +s— 1. O Corollary 16, this gives the following result.
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Corollary 18. If the Markov chain M (0) is T-mixing, then
for
ny > 271 In(e(ns + 2)) In(3dns2/9d),

for any start state X, with probability at least 1 — §

1A = Vonll.,
:O(Bc (ﬁn3+ I(Td)))

1=p

Notice that this corollary is weaker than Corollary 16,
since the mixing time of\/ (#) provides only a loose up-
per bound on the mixing time ¢f”. In particular, suppose
the stateX; decomposes intfl;, W;), wherel; is rapidly
mixing, butW; is slowly mixing (and the evolution of each
is independent of the other). Then¥f, and R; depend
only on V%, they will mix rapidly, but the bound implied by
Lemma 17 will be poor. A similar example shows that we
cannot obtain a bound on the mixing time §f in terms
of that of V; (or that of R;): consider what happens ¥,
depends only of;, but R; depends only ofV;.

6 APPROXIMATION ERROR

The estimate\ produced by th&POMDP algorithm con-
verges toVsn, an approximation to the gradie®t,. In [3],

we showed that this approximation is accurate, provided tha
the time constant/(1 — /) is large compared with the mix-
ing timer* of the derived Markov chaif/ (#). But the proof

Tlnns
n2

in [3] required the assumption that the eigenvalues of the

state transition probability matrix o/ (¢) are all distinct.

In this section, we present a similar result, but without the
restriction on the eigenvalues of the state transition @rob
bility matrix. The result is in terms of a slightly different
mixing time, based on thg? distance. (Despite the name,
they? distance is not symmetric).

Definition 19. Given two probability distributions P, on
{1,2,..., N}, withm; > 0 forall i, the x* distance between

P and m is given by
N o\ 172
(P — i)
ot = (L P27
i=1 ’

Lemma 20. For any two probability distributions P, 7 on
{1,2,... N}, withm; > 0 forall i,

dTv(P, 7T) S dx2(P, 7T).

Proof. We can define a vectar with v; = [p; — m;|/ /7,
so thatd,z(P,7) = ||v||. ButdsV (P, 7) = V/7'v, where
VT = [\/71,...,/7n]. Since||/w|| = 1, the Cauchy-

Schwartz inequality implies the result. O

Theorem 21. Partition the state transition probability ma-
trix P as
!
P
Pt — .
¢ !
Pn
Suppose there are constants ¢, T* for which

(Bxerdialrl, ) " < coxp -

[
T_* .
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Then for all 5 € [0, 1),

IVn(6) = B¥n(0)]] < | VV/ I3l (1 = 8)7,

where T = diag(m).

Notice that|[TT~!/?r||? is the expectation of? under
the stationary distribution. This result improves on the co
responding result in [3] by removing the restriction on the
distinctness of the eigenvalues of the transition prolitgbil
matrix. Unfortunately, the constants in this result areamot
small as we might like. In particular, it is easy to show that

EXNTFdX2 (pg(aﬂ-)z S N - 1a

and the case = 0 illustrates that this bound is tight. Thus,
the constant in the condition of Theorem 21 must be linear
in the sizeN of the state space, and hence to get a useful
bound,(1 — ) needs to be linear iV. The result in [3]
suggests that Theorem 21 can be improved.

The proof of Theorem 21 uses the following lemma.

Lemma 22.

HHl/Z (P'—é'n) H_l/ZH < \/EXNWdX2(p§(, )2

Proof. Write p§» (p;l, .
(v1,...,vn), we have

,P§ x)'- Then for anyv

o (H1/2 (Pt _ e/ﬂ_) H—1/2) v

=3 -
i,

= Vv (ph— )
J

T
—]vivj
T

Ui

; Vi
< loll Y- V/A7vidye (05, )
J
1/2

<loll? | Do mide (vl m* |
i

where both inequalities follow from the Cauchy-Schwartz
inequality. O



Proof. (of Theorem 21) Theorem 5 in [3] shows that

V0 (0 )—ﬁ%n( )|l
= Vr'( Zﬁ Pty
— Vﬂ' Zﬁt /

(becaus@w e=V(r'e) =0)

—V\/_l— Zﬁt(ﬂl/z )H_l/z)ﬂl/zr

(P, w2 2|

< VAl -8 ZWEM
(by Lemma 22)
<IvvRIT A
<V (1= B)er™ |/ >r
sincel /(1 — e~ Y77y < 7*.
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