
35

On the Learnability and Design of Output Codes
for Multiclass Problems

Koby Crammer and Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
fkobics,singerg@cs.huji.ac.il

Abstract

Output coding is a general framework for solving
multiclass categorization problems. Previous re-
search on output codes has focused on building
multiclass machines givenpredefined output codes.
In this paper we discuss for the first time the prob-
lem ofdesigning output codes for multiclass prob-
lems. For the design problem of discrete codes,
which have been used extensively in previous works,
we present mostly negative results. We then in-
troduce the notion of continuous codes and cast
the design problem of continuous codes as a con-
strained optimization problem. We describe three
optimization problems corresponding to three dif-
ferent norms of the code matrix. Interestingly, for
the l

2

norm our formalism results in a quadratic
program whose dual doesnot depend on the length
of the code. A special case of our formalism pro-
vides a multiclass scheme for building support vec-
tor machines which can be solved efficiently. We
give a time and space efficient algorithm for solv-
ing the quadratic program. Preliminary experiments
we have performed with synthetic data show that
our algorithm is often two orders of magnitude faster
than standard quadratic programming packages.

1 Introduction

Many applied machine learning problems require assigning
labels to instances where the labels are drawn from a finite
set of labels. This problem is often referred to as multiclass
categorization or classification. Examples for machine learn-
ing applications that include a multiclass categorizationcom-
ponent include optical character recognition, text classifica-
tion, phoneme classification for speech synthesis, medical
analysis, and more. Some of the well known binary classi-
fication learning algorithms can be extended to handle mul-
ticlass problem (see for instance [5, 19, 20]). A general ap-
proach is to reduce a multiclass problem to a multiple binary
classification problem.

Dietterich and Bakiri [9] described a general approach
based on error-correcting codes which they termed error-
correcting output coding (ECOC), or in short output cod-
ing. Output coding for multiclass problems is composed

of two stages. In the training stage we need to construct
multiple (supposedly) independent binary classifiers eachof
which is based on a different partition of the set of the labels
into two disjoint sets. In the second stage, the classification
part, the predictions of the binary classifiers are combinedto
extend a prediction on the original label of a test instance.
Experimental work has shown that output coding can often
greatly improve over standard reductions to binary problems
[9, 10, 16, 1, 21, 8, 4, 2]. The performance of output coding
was also analyzed in statistics and learning theoretic con-
texts [12, 15, 22, 2].

Most of the previous work on output coding has concen-
trated on the problem of solving multiclass problems using
predefined output codes, independently of the specific ap-
plication and the class of hypotheses used to construct the
binary classifiers. Therefore, by predefining the output code
we ignore the complexity of the induced binary problems.
The output codes used in experiments were typically con-
fined to a specific family of codes. Several family of codes
have been suggested and tested so far, such as, comparing
each class against the rest, comparing all pairs of classes [12,
2], random codes [9, 21, 2], exhaustive codes [9, 2], and lin-
ear error correcting codes [9]. A few heuristics attemptingto
modify the code so as to improve the multiclass prediction
accuracy were suggested (e.g., [1]). However, they did not
yield significant improvements and, furthermore, they lack
any formal justification.

In this paper we concentrate on the problem of designing
a good code for a given multiclass problem. In Sec. 3 we
study the problem of finding the first column of a discrete
code matrix. Given a binary classifier, we show that finding
a good first column can be done in polynomial time. In con-
trast, when we restrict the hypotheses class from which we
choose the binary classifiers, the problem of finding a good
first column becomes difficult. This result underscores the
difficulty of the code design problem. Furthermore, in Sec. 4
we discuss the general design problem and show that given
a set of binary classifiers the problem of finding a good code
matrix is NP-complete.

Motivated by the intractability results we introduce in
Sec. 5 the notion of continuous codes and cast the design
problem of continuous codes as a constrained optimization
problem. As in discrete codes, each column of the code ma-
trix divides the set of labels into two subsets which are la-
beled positive (+) and negative (�). The sign of each entry
in the code matrix determines the subset association (+ or

36

�) and the magnitude corresponds to the confidence in this
association. Given this formalism, we seek an output code
with small empirical loss whose matrix norm is small. We
describe three optimization problems corresponding to three
different norms of the code matrix:l

1

; l

2

andl
1

. For l
1

and
l

1

we show that the code design problem can be solved by
linear programming (LP). Interestingly, for thel

2

norm our
formalism results in a quadratic program (QP) whose dual
doesnot depend on the length of the code. Similar to sup-
port vector machines, the dual program can be expressed in
terms of inner-products between input instances, hence we
can employ kernel-based binary classifiers. Our framework
yields, as a special case, a direct and efficient method for
constructing multiclass support vector machine.

The number of variables in the dual quadratic problem
is the product of the number of samples by the number of
classes. This value becomes very large even for small datasets.
For instance, an English letter recognition problem with1;000

training examples would require26;000 variables. In this
case, the standard matrix representation of dual quadratic
problem would require more than 5 Giga bytes of mem-
ory. We therefore describe in Sec. 6.1 a memory efficient
algorithm for solving the quadratic program for code design.
Our algorithm is reminiscent of Platt’s sequential minimal
optimization (SMO) [17]. However, unlike SMO, our algo-
rithm optimize on each round a reduced subset of the vari-
ables that corresponds to a single example. Informally, our
algorithm reduces the optimization problem to a sequence
of small problems, where the size of each reduced problem
is equal to the number of classes of the original multiclass
problem. Each reduced problem can again be solved us-
ing a standard QP technique. However, standard approaches
would still require large amount of memory when the num-
ber of classes is large and a straightforward solution is also
time consuming. We therefore further develop the algorithm
and provide an analytic solution for the reduced problems
and an efficient algorithm for calculating the solution. The
run time of the algorithm is polynomial and the memory re-
quirements are linear in the number of classes. We conclude
with simulations results showing that our algorithm is at least
two orders of magnitude faster than a standard QP technique,
even for small number of classes.

2 Discrete codes

Let S = f(x

1

; y

1

); : : : ; (x

m

; y

m

)g be a set ofm training
examples where each instancex

i

belongs to a domainX .
We assume without loss of generality that each labely

i

is
an integer from the setY = f1; : : : ; kg. A multiclass clas-
sifier is a functionH : X ! Y that maps an instancex
into an elementy of Y . In this work we focus on a frame-
work that usesoutput codes to build multiclass classifiers
from binary classifiers. A discrete output codeM is a matrix
of sizek � l over f�1;+1g where each row ofM corre-
spond to a classy 2 Y . Each column ofM defines a parti-
tion of Y into two disjoint sets. Binary learning algorithms
are used to construct classifiers, one for each columnt of
M . That is, the set of examples induced by columnt of M
is (x

1

;M

t;y

1

); : : : ; (x

m

;M

t;y

m

). This set is fed as training
data to a learning algorithm that finds a hypothesish

t

: X !

f�1;+1g. This reduction yieldsl different binary classifiers

h

1

; : : : ; h

l

. We denote the vector of predictions of these clas-
sifiers on an instancex as�h(x) = (h

1

(x); : : : ; h

l

(x)). We
denote therth row ofM by �

M

r

.
Given an examplex we predict the labely for which the

row �

M

y

is the “closest” to�h(x). We will use a general notion
for closeness and define it through an inner-product function
K : R

l

� R

l

! R. The higher the value ofK(

�

h(x);

�

M

r

)

is the more confident we are thatr is the correct label ofx
according to the classifiers�h. An example for a closeness
function isK(�u; �v) = �u � �v. It is easy to verify that this
choice ofK is equivalent to picking the row ofM which
attains the minimal Hamming distance to�h(x).

Given a classifierH(x) and an example(x; y), we say
thatH(x) misclassified the example ifH(x) 6= y. Let [[�℄℄ be
1 if the predicate� holds and 0 otherwise. Our goal is there-
fore to find a classifierH(x) such that 1

m

P

m

i=1

[[H(x

i

) 6=

y

i

℄℄ is small. We would like to note in passing that in this
paper we mainly focus on theempirical loss minimization
problem. As in more standard classification problems, the
loss on a separate test set (generalization error) can also be
theoretically bounded given appropriate assumptions using
uniform-convergence theory [3, 13, 23]. We leave this for
future research.

When l is small there might be more then one row of
M which attains the maximal value according to the func-
tion K. To accommodate such cases we will relax our def-
inition and define a classifierH(X) based on a codeM
to be the mappingH(x) : X ! 2

Y given byH(x) =

fy j K(

�

h(x);

�

M

y

) = max

r

K(

�

h(x);

�

M

r

)g. In this case we
will pick one of the labels inH(x) uniformly at random, and
use the expected error ofH(x),

�

S

(M;

�

h)

def

=

1

m

m

X

i=1

�

1�

[[y

i

2 H(x

i

)℄℄

jH(x

i

)j

�

= 1�

1

m

m

X

i=1

[[y

i

2 H(x

i

)℄℄

jH(x

i

)j

(1)

In the context of output codes, a multiclass mappingH(x)

is thus determined by two parameters: the coding matrixM

and the set of binary classifiers�h(x). Assume that the binary
classifiersh

1

(x) : : : h

l

(x) are chosen from some hypothesis
classH. The following natural learning problems arise:(a)
Given a matrixM , find a set�h which suffers small empirical
loss. (b) Given a set of binary classifiers�h, find a matrixM
which has small empirical loss.(c) Find both a matrixM
and a set�h which have small empirical loss.

Previous work has focused mostly on the first problem.
In this paper we mainly concentrate on the code design prob-
lem (problemb), that is, finding a good matrixM . A sum-
mary of the notation is given in Appendix A.

3 Finding the first column of an output code

Assume we are given a single binary classifierh

1

(x) and we
want to find the first (or the single) column of the matrixM
which minimizes the empirical loss�

S

(M;

�

h). For brevity,
let us denote by�u = (u

1

: : : u

k

)

T the first column ofM . We
now describe an efficient algorithm that finds�u givenh

1

(x).
The algorithm’s running time is polynomial in the size of the

37

label setk = jYj and the sample sizem. First, note that in
this case

y

i

2 H(x

i

), h

1

(x

i

) = u

y

i

: (2)

Second, note that the sample can be divided into2k equiv-
alence classes according to their labels and the classifica-
tion of h

1

(x). For r = 1; : : : ; k and b 2 f�1;+1g, de-
fine ab

r

=

1

m

jfi : y

i

= r; h

1

(x

i

) = bgj to be the fraction of
the examples with labelr and classificationb (according to
h

1

(x)). Forb 2 f�1;+1g, denote byab =
P

k

r=1

a

b

r

, and let
w

b

= jfr : u

r

= bgj be the number of elements in�u which
are equal tob. (For brevity, we will often use+ and� to
denote the value ofb.) Let

�

S

(M;

�

h)

def

=

1

m

m

X

i=1

[[y

i

2 H(x

i

)℄℄

jH(x

i

)j

= 1� �

S

(M;

�

h) : (3)

We can assume without loss of generality that not all the ele-
ments in�u are the same (otherwise,�

S

(M;

�

h) =

1

k

, which is
equivalent to random guessing). Hence, the size ofH(x) is :

jH(x)j =

�

w

+

h(x) = +1

w

�

h(x) = �1 :

(4)

Using Eqs. (2) and (4), we rewrite Eq. (3),

�

S

(M;

�

h) =

1

m

X

i:y

i

2H(x

i

)

1

jH(x

i

)j

=

1

m

X

i:h(x

i

)=u

y

i

1

jH(x

i

)j

=

1

m

k

X

r=1

X

i:y

i

=r

h(x

i

)=u

r

�

1

w

+

u

r

= +1

1

w

�

u

r

= �1

=

k

X

r=1

(

a

+

r

w

+

u

r

= +1

a

�

r

w

�

u

r

= �1 :

(5)

Using Eq. (5) we now can expand�
S

(M;

�

h),

�

S

(M;

�

h) =

k

X

r=1

�

1

2

(1 + u

r

)

a

+

r

w

+

+

1

2

(1� u

r

)

a

�

r

w

�

�

=

1

2

k

X

r=1

�

u

r

�

a

+

r

w

+

�

a

�

r

w

�

��

+

1

2

k

X

r=1

�

a

+

r

w

+

+

a

�

r

w

�

�

=

1

2

k

X

r=1

�

u

r

�

a

+

r

w

+

�

a

�

r

w

�

��

+

1

2

�

a

+

w

+

+

a

�

w

�

�

: (6)

For a particular choice ofw+ (andw� = k � w

+) �
S

is
maximized (and�

S

is minimized) by settingu
r

= +1 at the

w

+ indices which attain the highest values for
�

a

+

r

w

+

�

a

�

r

w

�

�

,

and set the restw� of the indices to�1. This can be done
efficiently in k log k time using sorting. Therefore, the best
choice of�u is found by enumerating all the possible values
for w+

2 f1; : : : ; k � 1g and choosing the value ofw+

; w

�

which achieves the maximal value for Eq. (6). Since it takes
m operations to calculatea+

r

anda�
r

, the total number of op-
erations needed to find the optimal choice for the first column
isO(m+ k

2

log k). We have proven the following theorem.

Theorem 1 Let S = f(x

1

; y

1

); : : : ; (x

m

; y

m

)g be a set of
m training examples, where each label is an integer from the
set f1; : : : ; kg. Let H be a binary hypothesis class. Given
an hypothesis h

1

(x) 2 H, the first column of an output code
which minimizes the empirical loss defined by Eq. (1) can be
found in polynomial time.

To conclude this section we use a reduction from SAT
to demonstrate that if the learning algorithm (and its cor-
responding class of hypotheses from whichh

1

can chosen
from) is of a very restricted form then the resulting learn-
ing problem can be hard. Let	(x

1

: : : x

n

) be a boolean
formula over the variablesx

i

2 f�1;+1g where we in-
terpretx = �1 as False andx = +1 as True. Define
X = fx

i

; �x

i

g

n

i=1

[f?g to be the instance space. LetS =

f(x

i

; i)g

n

i=1

[f(�x

i

; i + n)g

n

i=1

[f(?; 2n + 1)g be a sam-
ple of sizem = 2n + 1, where the labels are taken from
Y = f1; : : : ; 2n + 1g. Define the learning algorithmL

	

as follows. The algorithm’s input is a binary labeled sam-
ple of the formf(x

i

; y

i

); (�x

i

; y

i+n

); (?; y

2n+1

)g

n

i=1

. If
	(x

1

; :::; x

n

) = True and for all i y

i

� y

i+n

= True,
then the algorithm returns an hypothesis which is consistent
with the sample (the sample itself). Otherwise, the algorithm
returns the constant hypothesis,h(x) � 1 or h(x) � 0,
which agrees with the majority of the sample by choosing
h(x) � argmax

b2f�1;+1g

jfi : y

i

= bgj. Note that the
learning algorithm is non-trivial in the sense that the hypoth-
esis it returns has an empirical loss of less than1=2 on the
binary labeled sample.

We now show that a multiclass learning algorithm that
minimizes the empirical loss�

S

over both the first column
�u and the hypothesish

1

(x) which was returned by the algo-
rithmL

	

, can be used to check whether the formula	 is sat-
isfiable. We need to consider two cases. When	(x

1

; :::; x

n

)

= True and for alli y
i

�y

i+n

= True, then using the def-

inition from Eq. (3) we get�
S

=

1

m

�

n

1

n

+ (n+ 1)

1

n+1

�

=

2

m

. If the above conditions do not hold (h(x) is constant), let
v � n + 1 be the number of examples which the hypothe-
sish

1

(x) classifies correctly. Then, using Eq. (3) again we
obtain�

S

=

1

m

�

v

1

v

�

=

1

m

. Thus, the minimum of�
S

is
achieved if and only if the formula	 is satisfiable. There-
fore, a learning algorithm forh

1

(x) and�u can also be used
as an oracle for the satisfiability of	.

While the setting discussed in this section is somewhat
superficial, these results underscore the difficulty of the prob-
lem. We next show that the problem of finding a good out-
put code given a relatively large set of classifiers�

h(x) is in-
tractable. We would like to note in passing that efficient al-
gorithm for finding a single column might be useful in other
settings. For instance in building trees or directed acyclic
graphs for multiclass problems (cf. [18]). We leave this for
future research.

4 Finding a general discrete output code

In this section we prove that given a set ofl binary classi-
fiers �h(x), finding a code matrix which minimizes the em-
pirical loss�

S

(M;

�

h) is NP-complete. Given a sampleS =

f(x

1

; y

1

); : : : ; (x

m

; y

m

)g and a set of classifiers�h, let us de-
note by~S = f(

�

h

1

; y

1

); : : : ; (

�

h

m

; y

m

)g the evaluation of�h(�)

38

on the sampleS, where�h
i

def

=

�

h(x

i

) is the predictions vector
for theith sample. We now show that even whenk = 2 and
K(�u; �v) = �u � �v the problem is NP-complete. (Clearly, the
problem remains NPC fork > 2). Following the notation of
previous sections, the output code matrix is composed of two
rows �

M

1

and �

M

2

and the predicted class for instancex
i

is
H(x

i

) = argmax

r=1;2

f

�

M

r

�

�

h

i

g. For the simplicity of the
presentation of the proof, we assume that both the codeM

and the hypotheses’ values�h
i

are over the setf0; 1g (instead
of f�1;+1g). This assumption does not change the problem
since there is a linear transform between the two sets.

Theorem 2 The following decision problem is NP-complete.
Input: A natural number q, a labeled sample

~

S = f(

�

h

1

; y

1

); : : : ; (

�

h

m

; y

m

)g,

where y
i

2 f1; 2g, and �

h

i

2 f0; 1g

l

.

Question: Does there exist a matrix M 2 f0; 1g
2�l

such
that the classifier H(x) based on an output code M makes

at most q mistakes on ~

S.

Proof: Our proof is based on a reduction technique intro-
duced by Höffgen and Simon [14]. Since we can check in
polynomial time whether the number of classification errors
for a given a code matrixM exceeds the boundq, the prob-
lem is clearly in NP.

We show a reduction to Vertex Cover in order to prove
that the problem is NP-hard. Given an undirected graphG =

(V;E), we will code the structure of the graph as follows.
The sample~S will be composed of two subsets,~SE and ~

S

V

of size2jEj andjV j respectively. We setl = 2jV j+1. Each
edgefv

i

; v

j

g 2 E is encoded by two examples(�h; y) in ~

S

E .
We set for the first vector toh

i

= 1, h
j

= 1, h
l

= 1 and0
elsewhere. We set the second vector toh

i+n

= 1, h
j+n

= 1,
h

l

= 1 and0 elsewhere. We set the labely of each example
in ~

S

E to 1. Each example(�h; y) in ~

S

V encodes a nodev
i

2

V whereh
i

= 1, h
i+n

= 1, h
l

= 1 and0 elsewhere. We
set the labely of each example in~SV to 2 (second class).
We now show that there exists a vertex coverU � V with
at mostq nodes if and only if there exists a coding matrix
M 2 f0; 1g

2�l that induces at mostq classification errors on
the sample~S.

()) : Let U � V be a vertex cover such thatjU j � q.
We show that there exists a code which has at mostq mis-
takes on~S. Letu 2 f0; 1gjV j be the characteristic function
of U , that is,u

i

= 1 if v
i

2 U andu
i

= 0 otherwise.
Define the output code matrix to be�M

1

= (u;u; 1) and
�

M

2

= (:u;:u; 0). Here,:u denotes the component-wise
logical not operator.

SinceU is a cover, for each�h 2 ~

S

E we get
�

M

1

�

�

h � 2 and �

M

2

�

�

h � 1)

�

M

2

�

�

h <

�

M

1

�

�

h :

Therefore, for all the examples in~SE the predicted label
equals the true label and we suffer0 errors on these exam-
ples. For each example�h 2 ~

S

V that corresponds to a node
v 2 U we have

�

M

1

�

�

h = 3 > 0 =

�

M

2

�

�

h :

Therefore, these examples are misclassified (Recall that the
label of each example in~SV is 2). Analogously, for each

example in~SV which corresponds tov 62 U we get

�

M

1

�

�

h = 1 < 2 =

�

M

2

�

�

h ;

and these examples are correctly classified. We thus have
shown that the total number of mistakes according toM is
jU j � q.

(() : Let M be a code which achieves at mostq mis-
takes on~S. We construct a subsetU � V as follows. We
scan~S and add toU all verticesv

i

corresponding to misclas-
sified examples from~SV . Similarly, for each misclassified
example from~

S

E corresponding to an edgefv
i

; v

j

g, we pick
eitherv

i

or v
j

at random and add it toU . Since we have at
mostq misclassified examples in~S the size ofU is at most
q. We claim that the setU is a vertex cover of the graphG.
Assume by contradiction that there is an edgefv

i

; v

j

g for
which neitherv

i

nor v
j

belong to the setU . Therefore, by
construction, the examples corresponding to the verticesv

i

andv
j

are classified correctly and we get,

M

1;i

+M

1;i+n

+M

1;l

< M

2;i

+M

2;i+n

+M

2;l

M

1;j

+M

1;j+n

+M

1;l

< M

2;j

+M

2;j+n

+M

2;l

Summing the above equations yields that,

M

1;i

+M

1;j

+M

1;i+n

+M

1;j+n

+ 2M

1;l

<

M

2;i

+M

2;j

+M

2;i+n

+M

2;j+n

+ 2M

2;l

: (7)

In addition, the two examples corresponding to the edge
fv

i

; v

j

g are classified correctly, implying that

M

1;i

+M

1;j

+M

1;l

> M

2;i

+M

2;j

+M

2;l

M

1;i+n

+M

1;j+n

+M

1;l

> M

2;i+n

+M

2;j+n

+M

2;l

which again by summing the above equations yields,

M

1;i

+M

1;j

+M

1;i+n

+M

1;j+n

+ 2M

2;l

>

M

2;i

+M

2;j

+M

2;i+n

+M

2;j+n

+ 2M

2;l

: (8)

Comparing Eqs. (7) and (8) we get a contradiction.

5 Continuous codes

The intractability results of previous sections motivate are-
laxation of output codes. In this section we describe a natu-
ral relaxation where both the classifiers’ output and the code
matrix are over the reals.

As before, the classifierH(x) is constructed from a code
matrixM and a set of binary classifiers�h(x). The matrixM
is of sizek� l overR where each row ofM corresponds to a
classy 2 Y . Analogously, each binary classifierh

t

(x) 2 H

is a mappingh
t

(x) : X ! R. A column t of M defines
a partition ofY into two disjoint sets. The sign of each el-
ement of thetth column is interpreted as the set (+1 or -1)
to which the classr belongs and the magnitudejM

r;t

j is in-
terpreted as the confidence in the associated partition. Sim-
ilarly, we interpret the sign ofh

t

(x) as the prediction of the
set (+1 or -1) to which the label of the instancex belongs and
the magnitudejh

t

(x)j as the confidence of this prediction.
Given an instancex, the classifierH(x) predicts the label
y which maximizes the confidence functionK(

�

h(x);

�

M

r

),
H(x) = argmax

r2Y

fK(

�

h(x);

�

M

r

)g. Since the code is
over the reals, we can assume here without loss of generality

39

that exactly one class attains the maximum value according
to the functionK. We will concentrate on the problem of
finding a good continuous code given a set of binary classi-
fiers�h.

The approach we will take is to cast the code design prob-
lem as constrained optimization problem. Borrowing the
idea of soft margin [7] we replace the discrete 0-1 multiclass
loss with the linear bound

max

r

fK(

�

h(x

i

);

�

M

r

) + 1� Æ

y

i

;r

g �K(

�

h(x

i

);

�

M

y

i

) : (9)

This formulation is also motivated by the generalization anal-
ysis of Schapire et al. [2]. The analysis they give is based on
the margin of examples where the margin is closely related
to the definition of the loss as given by Eq. (9).

Put another way, the correct label should have a confi-
dence value which is larger by at least one than any of the
confidences for the rest of the labels. Otherwise, we suffer
loss which is linearly proportional to the difference between
the confidence of the correct label and the maximum among
the confidences of the other labels. The bound on the empir-
ical loss is then,

�

S

(M;

�

h) =

1

m

m

X

i=1

[[H(x

i

) 6= y

i

℄℄

�

1

m

m

X

i=1

h

max

r

fK(

�

h(x

i

);

�

M

r

) + 1� Æ

y

i

;r

g

�K(

�

h(x

i

);

�

M

y

i

)

�

;

whereÆ
i;j

equals1 if i = j and0 otherwise. We say that a
sampleS is classified correctly using a set of binary classi-
fiers�h if there exists a matrixM such that the above loss is
equal to zero,

8i max

r

fK(

�

h(x

i

);

�

M

r

)+1� Æ

y

i

;r

g�K(

�

h(x

i

);

�

M

y

i

) = 0 :

(10)
Denote by

b

i;r

= 1� Æ

y

i

;r

: (11)
Thus, a matrixM that satisfies Eq. (10) would also satisfy
the following constraints,

8i; r K(

�

h(x

i

);

�

M

y

i

)�K(

�

h(x

i

);

�

M

r

) � b

i;r

: (12)

We view a codeM as a collection of vectors and define
the norm ofM to be the norm of the concatenation of the
vectors constitutingM . Motivated by [24, 2] we seek a ma-
trix M with a small norm which satisfies Eq. (12). Thus,
when the entire sampleS can be labeled correctly, the prob-
lem of finding a good matrixM can be stated as the follow-
ing optimization problem,

min

M

kMk

p

subject to : 8i; r K(

�

h(x

i

);

�

M

y

i

)�K(

�

h(x

i

);

�

M

r

) � b

i;r

Herep is an integer. Note thatm of the constraints forr = y

i

are automatically satisfied. This is changed in the following
derivation for the non-separable case. In the general case a
matrixM which classifies all the examples correctly might
not exist. We therefore introduce slack variables�

i

� 0 and
modify Eq. (10) to be,

8i max

r

fK(

�

h(x

i

);

�

M

r

)+1�Æ

y

i

;r

g�K(

�

h(x

i

);

�

M

y

i

) = �

i

:

(13)

The corresponding optimization problem is,

min

M

�kMk

p

+

m

X

i=1

�

i

(14)

subject to :

8i; r K(

�

h(x

i

);

�

M

y

i

)�K(

�

h(x

i

);

�

M

r

) � b

i;r

� �

i

for some constant� � 0. This is an optimization problem
with “soft” constraints. Analogously, we can define an opti-
mization problem with “hard” constraints,

min

M

m

X

i=1

�

i

subject to :

8i; r K(

�

h(x

i

);

�

M

y

i

)�K(

�

h(x

i

);

�

M

r

) � b

i;r

� �

i

kMk

p

� A, for someA > 0

The relation between the “hard” and “soft” constraints and
their formal properties is beyond the scope of this paper.
For further discussion on the relation between the problems
see [24].

5.1 Design of continuous codes using Linear
Programming

We now further develop Eq. (14) for the casesp = 1; 2;1.
We deal first with the casesp = 1 andp =1 which result in
linear programs. For the simplicity of presentation we will
assume thatK(�u; �v) = �u � �v .

For the casep = 1 the objective function of Eq. (14) be-
comes�

P

i;r

jM

i;r

j+

P

i

�

i

. We introduce a set of auxiliary
variables�

i;r

= jM

i;r

j to get a standard linear programming
setting,

min

M;�;�

�

X

r;t

�

r;t

+

m

X

i=1

�

i

subject to : 8i; r �

i

+

�

h(x

i

) �

�

M

y

i

�

�

h(x

i

) �

�

M

r

� b

i;r

8r; t �

r;t

� �M

r;t

To obtain its dual program (see also App. B) we define one
variable for each constraint of the primal problem. We use
�

i;r

for the first set of constraints, and
�
t;r

for the second set.
The dual program is,

max

�;

�

X

i;r

�

i;r

b

i;r

subject to : 8i; r; t �

i;r

;

+

t;r

;

�

t;r

� 0

8i

X

r

�

i;r

= 1

8r; t

+

t;r

+

�

t;r

= �

8r; t

X

i

h

t

(x

i

)[Æ

y

i

;r

� �

i;r

℄ = �

+

t;r

+

�

t;r

The case ofp = 1 is similar. The objective function of
Eq. (14) becomes�max

i;r

jM

i;r

j +

P

i

�

i

. We introduce a
single new variable� = max

i;r

jM

i;r

j to obtain the primal
problem,

min

M;�;�

��+

m

X

i=1

�

i

40

subject to : 8i; r �

i

+

�

h(x

i

) �

�

M

y

i

�

�

h(x

i

) �

�

M

r

� b

i;r

8r; t � � �M

r;t

Following the technique forp = 1, we get that the dual pro-
gram is,

max

�;

�

X

i;r

�

i;r

b

i;r

subject to : 8i; r; t �

i;r

;

+

t;r

;

�

t;r

� 0

8i

X

r

�

i;r

= 1

X

t;r

(

+

t;r

+

�

t;r

) = �

8r; t

X

i

h

t

(x

i

)[Æ

y

i

;r

� �

i;r

℄ = �

+

t;r

+

�

t;r

Both programs (p = 1 and0 =1) can be now solved using
standard linear program packages.

5.2 Design of continuous codes using Quadric
Programming

We now discuss in detail Eq. (14) for the casep = 2. For
convenience we use the square of the norm of the matrix
(instead the norm itself). Therefore, the primal program be-
comes,

min

M;�

1

2

�kMk

2

2

+

m

X

i=1

�

i

(15)

subject to : 8i; r �

i

+

�

h(x

i

) �

�

M

y

i

�

�

h(x

i

) �

�

M

r

� b

i;r

We solve the optimization problem by finding a saddle point
of the Lagrangian :

L(M; �

i

; �) =

1

2

�

X

r

k

�

M

r

k

2

2

+

m

X

i=1

�

i

+

P

i;r

�

i;r

�

�

h(x

i

) �

�

M

r

�

�

h(x

i

) �

�

M

y

i

� �

i

+ b

i;r

�

subject to :8i; r �

i;r

� 0 (16)

The saddle point we are seeking is a minimum for the primal
variables (M; �), and the maximum for the dual ones (�). To
find the minimum over the primal variables we require,

�

��

i

L = 1�

X

r

�

i;r

= 0)

X

r

�

i;r

= 1 (17)

Similarly, for �

M

r

we require,

�

�

�

M

r

L = 0 (18)

)

X

i

�

i;r

�

h(x

i

)�

X

i;y

i

=r

�

h(x

i

)

X

r0

�

i;r0

!

| {z }

=1

+�

�

M

r

= 0

)

�

M

r

= �

�1

"

X

i

�

h(x

i

)(Æ

y

i

;r

� �

i;r

)

#

(19)

Eq. (19) implies that when the optimum of the objective
function is achieved, each row of the matrixM is a linear

combination of�h(x
i

). We say that an examplei is asupport
pattern for classr if the coefficient(Æ

y

i

;r

� �

i;r

) of �h(x
i

)

in Eq. (19) is not zero. There are two settings for which an
examplei can be a support pattern for classr. The first case
is when the labely

i

of an example is equal tor, then theith
example is a support pattern if�

i;r

< 1. The second case is
when the labely

i

of the example is different fromr, then the
ith pattern is a support pattern if�

i;r

> 0.
Loosely speaking, since for alli andr we have�

i;r

� 0

and
P

r

�

i;r

= 1, the variable�
i;r

can be viewed as a distri-
bution over the labels for each example. An examplei affects
the solution forM (Eq. (19)) if and only if��

i

in not a point
distribution concentrating on the correct labely

i

. Thus, only
the questionable patterns contribute to the learning process.

We develop the Lagrangian using only the dual variables.
Substituting Eqs. (17) and (19) into Eq. (16) and using vari-
ous algebraic manipulations, we obtain that the target func-
tion of the dual program is,

Q(�) =

�

1

2

�

�1

X

i;j

�

h(x

i

) �

�

h(x

j

)

X

r

(Æ

y

i

;r

� �

i;r

)(Æ

y

j

;r

� �

j;r

)

+

X

i;r

�

i;r

b

i;r

(Details are omitted due to the lack of space.) Let�

1

i

be the
vector with all components zero, except for theith compo-
nent which is equal to one, and let�1 be the vector whose
components are all one. Using this notation we can rewrite
the dual program in vector form as

max

�

Q(�)

subject to : 8r ��

i

� 0 and��
i

�

�

1 = 1 (20)

where

Q(�) =

�

1

2

�

�1

X

i;j

�

�

h(x

i

) �

�

h(x

j

)

� �

(

�

1

y

i

� ��

i

) � (

�

1

y

j

� ��

j

)

�

+

X

i

��

i

�

�

b

i

It is easy to verify thatQ(�) is strictly convex in�. Since
the constraints are linear the above problem has a single opti-
mal solution and therefore QP methods can be used to solve
it. In Sec. 6 we describe a memory efficient algorithm for
solving this special QP problem.

To simplify the equations we denote by��
i

=

�

1

y

i

� ��

i

the difference between the correct point distribution and the
distribution obtained by the optimization problem, Eq. (19)
becomes,

�

M

r

= �

�1

X

i

�

h(x

i

)�

i;r

(21)

Since we look for the value of the variables which maximize
the objective functionQ (and not the optimum ofQ itself),
we can omit constants and write the dual problem given by
Eq. (20) as,

max

�

Q(�)

subject to : 8r ��

i

�

�

1

y

i

and��
i

�

�

1 = 0 (22)

41

where

Q(�) = �

1

2

�

�1

X

i;j

[

�

h(x

i

) �

�

h(x

j

)℄(��

i

� ��

j

)�

X

i

��

i

�

�

b

i

Finally, the classifierH(x) can be written in terms of the
variable� as,

H(x) = argmax

r

�

�

h(x) �

�

M

r

	

= argmax

r

(

�

h(x) �

"

�

�1

X

i

�

h(x

i

)�

i;r

#)

= argmax

r

(

�

�1

X

i

�

i;r

�

�

h(x) �

�

h(x

i

)

�

)

= argmax

r

(

X

i

�

i;r

�

�

h(x) �

�

h(x

i

)

�

)

: (23)

As in Support Vector Machines, the dual program and
the classification algorithm dependonly on inner products
of the form �

h(x

i

) �

�

h(x). Therefore, we can perform the
calculations in some high dimensional inner-product space
Z using a transformation�� : R

l

! Z . We thus replace
the inner-product in Eq. (22) and in Eq. (23) with a general
inner-product kernelK that satisfies Mercer conditions [24].
The general dual program is therefore,

max

�

Q(�)

subject to : 8i ��

i

�

�

1

y

i

and��
i

�

�

1 = 0 (24)

where :

Q(�) = �

1

2

�

�1

X

i;j

K

�

�

h(x

i

);

�

h(x

j

)

�

(��

i

� ��

j

)�

X

i

��

i

�

�

b

i

and the classification ruleH(x) becomes,

H(x) = argmax

r

(

X

i

�

i;r

K

�

�

h(x);

�

h(x

i

)

�

)

(25)

The general framework for designing output codes using
the QP program described above, also provides, as a special
case, a new algorithm for building multiclass Support Vec-
tors Machines. Assume that the instance space is the vector

spaceRn and define�h(�x)
def

= �x (thusl = n), then the primal
program in Eq. (15) becomes

min

M;�

1

2

�kMk

2

2

+

P

m

i=1

�

i

subject to : 8i; r �

i

+ �x

i

�

�

M

y

i

� �x

i

�

�

M

r

� b

i;r

(26)

Note that fork = 2 Eq. (26) reduces to the primal pro-
gram of SVM, if we take �

M

1

= �

�

M

2

andC = �

�1. We
would also like to note that this special case is reminiscent
of the multiclass approach for SVM’s suggested by Weston
and Watkins [25]. Their approach compared the confidence
K(x;

�

M

y

) to the confidences ofall other labelsK(x;

�

M

r

)

and hadm(k � 1) slack variables in the primal problem. In
contrast, in our framework the confidenceK(x;

�

M

y

) is com-
pared tomax

r 6=y

K(x;

�

M

r

) and has onlym slack variables
in the primal program.

In Table 1 we summarize the properties of the programs
discussed above. As shown in the table, the advantage of
usingl

2

in the objective function is that the number of vari-
ables in the dual problem in only a function of onk andm
and doesnot depend on the number columnsl in M . The
number of columns inM only affects the evaluation of the
inner-product kernelK.

The formalism given by Eq. (14) can also be used to con-
struct the code matrix incrementally (column by column).
We now outline the incremental (inductive) approach. How-
ever, we would like to note that this method only applies
whenK(�v; �u) = �v � �u. In the first step of the incremental al-
gorithm, we are given a single binary classifierh

1

(x) and we
need to construct the first column ofM . We rewrite Eq. (14)
in a scalar form and obtain,

min

M

�kMk

p

+

m

X

i=1

�

i

(27)

subject to : 8i; r h

1

(x

i

)M

y

i

� h

1

(x

i

)M

r

� b

i;r

� �

i

:

Here,� � 0 is a given constant andb
i;r

= 1 � Æ

y

i

;r

, as be-
fore. For the rest of the columns we assume inductively that
h

1

(x); : : : ; h

l

(x) have been provided and the firstl columns
of the matrixM have been found. In addition, we are pro-

vided with a new binary classifierh
l+1

(x)

def

= h

0

(x) for the
next column. We need to find a new column ofM (indexed
l + 1). We substitute the new classifier and the matrix in
Eq. (13) and get,

8i max

r

f

�

h(x

i

) �

�

M

r

+ h

0

(x

i

)M

0

r

+ 1� Æ

y

i

;r

g �

�

�

h(x

i

) �

�

M

y

i

+ h

0

(x

i

)M

0

y

i

�

= �

i

:

The constraints appearing in Eq. (14) now become
�

h(x

i

) �

�

M

y

i

+ h

0

(x

i

)M

0

y

i

�

�

h(x

i

) �

�

M

r

� h

0

(x

i

)M

0

r

�

1� Æ

y

i

;r

� �

i

) h

0

(x

i

)M

0

y

i

� h

0

(x

i

)M

0

r

�

�[

�

h(x

i

) �

�

M

y

i

�

�

h(x

i

) �

�

M

r

℄ + 1� Æ

y

i

;r

� �

i

:

We now redefineb
i;r

to be�[�h(x
i

) �

�

M

y

i

�

�

h(x

i

) �

�

M

r

℄ +

1� Æ

y

i

;r

. It is straightforward to verify that this definition of
b

i;r

results in an equation of the same form of Eq. (27). We
can thus apply the same algorithms designed for the “batch”
case. In the case ofl

1

andl
1

, this construction decomposes
a single problem intol sub-problems with fewer variables
and constraints. However, forl

2

the size of the program re-
mains the same while we lose the ability to use kernels. We
therefore concentrate on the batch case for which we need to
find the entire matrix at once.

6 An efficient algorithm for the QP problem

The quadratic program presented in Eq. (24) can be solved
using standard QP techniques. As shown in Table 1 the dual
program depends onmk variables and haskm + m con-
straints all together. Converting the dual program in Eq. (24)
to a standard QP form requires storing and manipulating a
matrix with (mk)

2 elements. Clearly, this would prohibit
applications of non-trivial size. We now introduce a mem-
ory efficient algorithm for solving the quadratic optimization
problem given by Eq. (24).

42

l

1

l

2

l

1

Primal Variables m+ 2kl m+ kl m+ kl + 1

0-Constraints 0 0 0

Constraints km+ 2kl km km+ 2kl

Dual Variables km+ 2kl km km+ 2kl

0-Constraints km+ 2kl km km+ 2kl

Constraints m+ 2kl m m+ kl + 1

Table 1: Summary of the sizes of the optimization problems
for different norms. (See Appendix B for the definitions of
the constraints in linear programming.)

First, note that the constraints in Eq. (24) can be divided
intom disjoint subsetsf��

i

�

�

1

y

i

, ��
i

�

�

1 = 0g

m

i=1

. The algo-
rithm we describe works in rounds. On each round it picks a
single setf��

i

�

�

1

y

i

; ��

i

�

�

1 = 0g, and modifies��
i

so as to op-
timize the reduced optimization problem. The algorithm is
reminiscent of Platt’s SMO algorithm [17]. Note, however,
that our algorithm optimizesone example on each round, and
not two as in SMO.

Let us fix an example index p and write the objective
function only in terms of the variables��

p

. For brevity, let
K

i;j

= K

�

�

h(x

i

);

�

h(x

j

)

�

. We isolate��
p

in Q.

Q

p

(��

p

)

def

= �

1

2

�

�1

X

i;j

K

i;j

(��

i

� ��

j

)�

X

i

��

i

�

�

b

i

= �

1

2

�

�1

K

p;p

(��

p

� ��

p

)� �

�1

X

i 6=p

K

i;p

(��

p

� ��

i

)

�

1

2

�

�1

X

i;j 6=p

K

i;j

(��

i

� ��

j

)� ��

p

�

�

b

p

�

X

i 6=p

��

i

�

�

b

i

= �

1

2

�

�1

K

p;p

(��

p

� ��

p

)� ��

p

� [

�

b

p

+ �

�1

X

i 6=p

K

i;p

��

i

℄

+[�

1

2

�

�1

X

i;j 6=p

K

i;j

(��

i

� ��

j

)�

X

i 6=p

��

i

�

�

b

i

℄

= �

1

2

A

p

(��

p

� ��

p

)�

�

B

p

� ��

p

+ C

p

(28)

where,

A

p

= �

�1

K

p;p

> 0 (29)

�

B

p

=

�

b

p

+ �

�1

X

i 6=p

K

i;p

��

i

(30)

C

p

= �

1

2

�

�1

X

i;j 6=p

K

i;j

(��

i

� ��

j

)�

X

i 6=p

��

i

�

�

b

i

(31)

For brevity, we will omit the indexp and drop constants
(that do not affect the solution). The reduced optimization
hask variables andk + 1 constraints,

max

�

Q(��) = �

1

2

A(�� � ��)�

�

B � ��

subject to : �� �

�

1

y

and�� � �1 = 0 (32)

Although this program can be solved using a standard QP
technique, it still requires large amount of memory when

k is large, and a straightforward solution is also time con-
suming. Furthermore, this problem constitutes the core and
inner-loop of the algorithm. We therefore further develop the
algorithm and describe a more efficient method for solving
Eq. (32). We writeQ(��) in Eq. (32) using a completion to
quadratic form,

Q(��) = �

1

2

A(�� � ��)�

�

B � ��

= �

1

2

A[(�� +

�

B

A

) � (�� +

�

B

A

)℄ +

�

B �

�

B

2A

SinceA > 0 the program from Eq. (32) becomes,

min

�

Q(��) = k��k

2

subject to : �� �

�

D and�� � �1 =

�

D �

�

1� 1

where,

�� = �� +

�

B

A

�

D =

�

B

A

+

�

1

y

(33)

In Sec. 6.1 we discuss an analytic solution to Eq. (33) and in
Sec. 6.2 we describe a time efficient algorithm for computing
the analytic solution.

6.1 An analytic solution

While the algorithmic solution we describe in this section
is simple to implement and efficient, its derivation is quite
complex. Before describing the analytic solution to Eq. (33),
we would like to give some intuition on our method. Let us
fix some vector�D and denote� = �� �

�

1. First note that
�� =

�

D is not a feasible point since the constraint�� �

�

1 =

�

D �

�

1� 1 is not satisfied. Hence for any feasible point some
of the constraints�� � �

D are not tight. Second, note that
the differences between the boundsD

r

and the variables�
r

sum to one. Let us induce a uniform distribution over the
components of��. Then, the variance of�� is

�

2

= E[�

2

℄� [E�℄

2

=

1

k

k��k

2

�

1

k

2

�

2

Since the expectation� is constrained to a given value, the
optimal solution is the vector achieving the smallest vari-
ance. That is, the components of of�� should attain similar
values, as much as possible, under the inequality constraints
�� �

�

D. In Fig. 1 we illustrate this motivation. We picked
�

D = (1:0; 0:2; 0:6; 0:8; 0:6) and show plots for two different
feasible values for��. The x-axis is the indexr of the point
and the y-axis designates the values of the components of
��. The norm of�� on the plot on the right hand side plot is
smaller than the norm of the plot on the left hand side. The
right hand side plot is the optimal solution for��. The sum
of the lengths of the arrows in both plots is�D � �1 � �� �

�

1.
Since both sets of points are feasible, they satisfy the con-
straint�� � �1 =

�

D �

�

1� 1. Thus, the sum of the lengths of the
“arrows” in both plots is one. We exploit this observation in
the algorithm we describe in the sequel.

We therefore seek a feasible vector�� whose most of its
components are equal to some threshold�. Given� we de-
fine a vector�� whose itsrth component equal to the mini-
mum between� andD

r

, hence the inequality constraints are
satisfied. We define

�

�

r

=

�

� � � D

r

D

r

� > D

r

(34)

43

35

0 1 2 3 4 5 6

−0.2

0

0.2

0.4

0.6

0.8

1

ν = [0.0 0.2 0.6 0.8 0.6] , ||ν|| =1.4

D
v

35

0 1 2 3 4 5 6

−0.2

0

0.2

0.4

0.6

0.8

1

ν = [0.5 0.2 0.5 0.5 0.5] , ||ν|| =1.04

D
v

Figure 1: An illustration of two feasible points for the re-
duced optimization problem with�D = (1; 0:2; 0:6; 0:8; 0:6).
The x-axis is the index of the point, and the y-axis denotes
the values��. The bottom plot has a smaller variance hence it
achieves a better value forQ.

We denote by

F (�) = ��

�

�

�

1 =

k

X

r=1

�

�

r

:

UsingF , the equality constraint from Eq. (33) becomes
F (�) =

�

D �

�

1� 1.
Let us assume without loss of generality that the compo-

nents of the vector�� are given in a descending order,D

1

�

D

2

� : : :D

k

(this can be done ink log k time). LetD
k+1

=

�1 andD
0

=1. To prove the main theorem of this section
we need the following lemma.

Lemma 3 F (�) is piecewise linear with a slope r in each
range (D

r+1

; D

r

) for r = 0; : : : ; k.

Proof: Let us developF (�).

F (�) =

k

X

r=1

�

� � � D

r

D

r

� > D

r

=

k

X

r=1

f[[� > D

r

℄℄D

r

+ [[� � D

r

℄℄�g

=

k

X

r=1

[[� > D

r

℄℄D

r

+ �

k

X

r=1

[[� � D

r

℄℄

35

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

Θ

F

d(1)

d(2)

d(3),d(5)

d(4)

Figure 2: An illustration of the solution of the QP problem
using the inverse ofF (�) for �

D = (1; 0:2; 0:6; 0:8; 0:6). The
optimal value is the solution for the equationF (�) = 2:2

which is0:5.

Note that if� > D

r

then� > D

u

for all u � r. Also, the
equality

P

k

r

0

=1

[[� � D

r

0

℄℄ = r holds for each� in the range
D

r+1

< � < D

r

. Thus, forD
r+1

< � < D

r

(r = 0 � � � k),
the functionF (�) has the form,

F (�) =

k

X

u=r+1

D

u

+ r� (35)

This completes the proof.

Corollary 4 There exists a unique �
0

� D

1

such that

F (�

0

) =

�

D �

�

1� 1 :

Proof: From Eq. (35) we conclude thatF (�) is strictly
increasing and continuous in the range� � D

1

. Therefore,
F (�) has an inverse in that range, using the theorem that
every strictly increasing and continuous function has an in-
verse. SinceF (�) = k� for � � D

k

thenF (�) ! �1 as
� ! �1. Hence, the range ofF for the interval(�1; D

1

℄

is the interval(�1;

�

D �

�

1℄ which clearly contains�D � �1� 1.

Thus�
0

def

= F

�1

(

�

D �

�

1�1) 2 [�1; D

1

℄ as needed. Unique-
ness of�

0

follows the fact that the functionF is a one-to-one
mapping onto(�1;

�

D �

�

1℄.
We now can prove the main theorem of this section.

Theorem 5 Let �
0

be the unique solution ofF (�) = �

D�

�

1�1.
Then ��

�

0 is the optimum value of the optimization problem
stated in Eq. (33).

The theorem tells us that the optimum value of Eq. (33) is
of the form defined by Eq. (34) and that there is exactly one
value of� for which the equality constraintF (�) = ��

�

�

�

1 =

�

D �

�

1 � 1 holds. A plot ofF (�) and the solution for� from
Fig. 1 are shown in Fig. 2.
Proof: Corollary 4 implies that a solution exists and is
unique. Note also that from definition of�

0

we have that
the vector���0 is a feasible point of Eq. (33). We now
prove that���0 is the optimum of Eq. (33) by showing that
k��k

2

> k��

�

0

k

2 for all feasible points�� 6= ��

�.
Assume, by contradiction, that there is a vector�� such

that k��k2 � k���0k2. Let ��
def

= �� � ��

�

6=

�

0, and define

44

I

def

= fr : �

�

r

= D

r

g = fr : �

0

> D

r

g. Since both�� and
��

�

0 satisfy the equality constraint of Eq. (33), we have,

�� �

�

1 = ��

�

0

�

�

1) (�� � ��

�

0

) �

�

1 = 0

) �� �

�

1 =

k

X

r=1

�

r

= 0 (36)

Since�� is a feasible point we have�� = ��

�

0

+ �� �

�

D. Also,
by the definition of the setI we have that��

r

= D

r

for all
r 2 I . Combining the two properties we get,

�

r

� 0 for all r 2 I (37)

We start with the simpler case of�
r

= 0 for all r 2 I . In
this case,�� differs from ��

�

0 only on a subset of the coordi-
natesr =2 I . However, for these coordinates the components
of ���0 are equal to�

0

, thus we obtain a zero variance from
the constant vector whose components are all�

0

. Therefore,
no other feasible vector can achieve a better variance. For-
mally, since�

r

= 0 for all r 2 I , then the terms forr 2 I

cancel each other,

k��k

2

� k��

�

0

k

2

=

k

X

r=1

(�

�

0

r

+ �

r

)

2

�

k

X

r=1

(�

�

0

r

)

2

=

X

r=2I

(�

�

0

r

+ �

r

)

2

�

X

r=2I

(�

�

0

r

)

2

:

From the definition of���0 in Eq. (34) we get that��0
r

= �

0

for all r =2 I ,

k��k

2

� k��

�

0

k

2

=

X

r=2I

(�

0

+ �

r

)

2

�

X

r=2I

�

2

0

= 2�

0

X

r=2I

�

r

+

X

r=2I

�

2

r

:

We use now the assumption that�

r

= 0 for all r 2 I and the
equality

P

k

r=1

�

r

= 0 (Eq. (36)) to obtain,

k��k

2

� k��

�

0

k

2

= 2�

0

k

X

r=1

�

r

+

k

X

r=1

�

2

r

=

k

X

r=1

�

2

r

> 0

and we get a contradiction since�� 6= �

0.
We now turn to prove the complementary case in which

P

r2I

�

r

< 0. Since
P

r2I

�

r

< 0, then there existsu 2 I

such that�
u

< 0. We use again Eq. (36) and conclude that
there exists alsov =2 I such that�

v

> 0. Let us assume
without loss of generality that�

u

+ �

v

< 0 (The case�
u

+

�

v

� 0 follows analogously by switching the roles ofu and
v). Define��0 as follows,

�

0

r

=

(

�

u

+ �

v

r = u

�

v

� �

v

r = v

�

r

otherwise

The vector��0 satisfies the constraints of Eq. (33) since�

0

u

=

�

u

+ �

v

= D

u

+ �

u

+ �

v

< D

u

and�0
v

= �

v

� �

v

=

�

0

+ �

v

� �

v

= �

0

� D

v

. Since�� and��0 are equal except for
theiru andv components we get,

k��

0

k

2

� k��k

2

= [(�

0

u

)

2

+ (�

0

v

)

2

℄� [(�

u

)

2

+ (�

v

)

2

℄

Input : �D.
Initialize � =

�

D.
DefineD

k+1

= �1.
Sort the components of�D, such thatD

i

1

� D

i

2

: : : D

i

k+1

.
Definer = 0; �(1) = 1.
While �(r + 1) > 0

� r r + 1.
� �(r + 1) = �(r) � r(D

i

r

�D

i

r+1

). Eq. (39)

Compute�
0

 D

i

r

�

�(r)

r

. Eq. (40)
For q = 1; : : : ; r assign�

i

q

= �

0

.
Return��.

Figure 3: The algorithm for finding the optimal solution of
the reduced quadratic program (Eq. (33)).

Substituting the values for�0
u

and�0
v

from the definition of
��

0 we obtain,

k��

0

k

2

� k��k

2

= [(�

u

+ �

v

)

2

+ (�

v

� �

v

)

2

℄� [(�

u

)

2

+ (�

v

)

2

℄

= �

2

v

+ 2�

u

�

v

+ �

2

v

� 2�

v

�

v

= 2�

2

v

+ 2(�

u

� �

v

)�

v

Using the definition of�� and���0 for �
u

= �

�

0

u

+ �

u

= D

u

+

�

u

and for�
v

= �

�

0

v

+ �

v

= �

0

+ �

v

we obtain,

k��

0

k

2

� k��k

2

= 2�

2

v

+ 2(D

u

+ �

u

� �

0

� �

v

)�

v

= 2(D

u

+ �

u

� �

0

)�

v

= 2�

u

�

v

+ 2(D

u

� �

0

)�

v

The first term of the bottom equation is negative since�

u

< 0

and�
v

> 0. Alsou 2 I , hence�
0

> D

u

and the second term
is also negative. We thus get,

k��

0

k

2

� k��k

2

< 0 :

which is a contradiction.

6.2 An efficient algorithm for computing the analytic
solution

The optimization problem of Eq. (33) can be solved using
standard QP methods, and interior point methods in particu-
lar [11]. For these methods the computation time is�(k

2

).
In this section we give an algorithm for solving that opti-
mization problem inO(k log k) time, by solving the equa-
tionF (�) = �

D �

�

1� 1.
As before, we assume that the components of the vector

�� are given in a descending order,D

1

� D

2

� : : : D

k

and
we denoteD

k+1

= �1. The algorithm searches for the
interval [D

r+1

; D

r

) which contains�
0

. We now use simple
algebraic manipulations to derive the search scheme for�

0

.
SinceF (D

1

) = F (�

0

) + 1, then�
0

2 [D

r+1

; D

r

), iff

1 > F (D

1

)� F (D

r

) and F (D

1

)� F (D

r+1

) � 1 :

For convenience, we define the potential function

�(r) = 1� [F (D

1

)� F (D

r

)℄ ; (38)

and obtain,

�

0

2 [D

r+1

; D

r

) , �(r) > 0 and�(r + 1) � 0

45

Input : f(�h(x
1

); y

1

); : : : ; (

�

h(x

m

); y

m

)g.
Choosef��

i

g - a feasible point for Eq. (24).
Iterate.

� Choose an examplep
� ComputeA

p

andB
p

Eqs. (29) and (30)

�

�

D

p

�

B

p

A

p

+

�

1

y

p

. Eq. (33)

� Compute� = F

�1

(

�

D

p

�

�

1� 1) Fig. 3

� ��

p

 ��

�

p

�

�

B

p

A

p

Eq. (33)

Output the final hypothesis: Eq. (25)

H(x) = argmax

r

(

X

i

�

i;r

K

�

�

h(x);

�

h(x

i

)

�

)

Figure 4: A skeleton of the algorithm for finding a classifier
based on an output code by solving the quadratic program
defined in Eq. (24).

Also note that,

�(r)� �(r + 1) = f1� [F (D

1

)� F (D

r

)℄g

� f1� [F (D

1

)� F (D

r+1

)℄g

= F (D

r

)� F (D

r+1

) :

Recall that the functionF (�) is linear in each interval
[D

r+1

; D

r

) with a sloper (Lemma 3), hence,

F (D

r

)� F (D

r+1

) = r(D

r

�D

r+1

)

) �(r + 1) = �(r) � r(D

r

�D

r+1

) : (39)

To solve the equationF (�) =

�

D �

�

1 � 1, we first findr
such that�(r) > 0 and�(r + 1) � 0, which implies that
�

0

2 [D

r+1

; D

r

). Using Eq. (38) and the equationF (D
1

) =

F (�

0

) + 1 we get,

F (D

r

)� F (�

0

) = �(r) :

Using the linearity ofF (�) we obtain,

F (D

r

)�F (�

0

) = r(D

r

��

0

)) r(D

r

��

0

) = �(r)

therefore

�

0

= D

r

�

�(r)

r

: (40)

The complete algorithm is described in Fig. 3. Since it
takesO(k log k) time to sort the vector�D and anotherO(k)
time for the loop search, the total run time isO(k log k).

We are finally ready to give the algorithm for solving
learning problem described by Eq. (24). Since the output
code is constructed of the supporting patterns we term our
algorithm SPOC for Support Pattern Output Coding. The
SPOC algorithm is described in Fig. 4. We have also devel-
oped methods for choosing an examplep to modify on each
round and a stopping criterion for the entire optimization al-
gorithm. Due to lack of space we omit the details which will
appear in a full paper.

We have performed preliminary experiments with syn-
thetic data in order to check the actual performance of our
algorithm. We tested the special case corresponding to mul-
ticlass SVM by setting�h(x) = x. The code matrices we test

35

0 50 100 150 200 250 300
−1

0

1

2

3

4

5

No. of training examples

L
o

g
1

0
(r

u
n

 t
im

e
)

QP
SPOC

Figure 5: Run time comparison of two algorithms for code
design using quadratic programming: Matlab’s standard QP
package and the proposed algorithm (denoted SPOC). Note
that we used a logarithmic scale for the run-time (y) axis.

are ofk = 4 rows (classes) andl = 2 columns. We varied
the size of the training set size fromm = 10 to m = 250.
The examples were generated using the uniform distribution
over [�1; 1℄ � [�1; 1℄. The domain[�1; 1℄ � [�1; 1℄ was
partitioned into four quarters of equal size:[�1; 0℄� [�1; 0℄,
[�1; 0℄�[0; 1℄, [0; 1℄�[�1; 0℄, and[0; 1℄�[0; 1℄. Each quarter
was associated with a different label. For each sample size
we tested, we ran the algorithm three times, each run used a
different randomly generated training set. We compared the
standard quadratic optimization routine available from Mat-
lab with our algorithm which was also implemented in Mat-
lab. The average running time results are shown in Fig. 5.
Note that we used a log-scale for they (run-time) axis. The
results show that the efficient algorithm can be two orders of
magnitude faster than the standard QP package.

7 Conclusions and future research

In this paper we investigated the problem ofdesigning out-
put codes for solving multiclass problems. We first discussed
discrete codes and showed that while the problem is intractable
in general we can find the first column of a code matrix in
polynomial time. The question whether the algorithm can be
generalized tol � 2 columns with running time ofO(2l)
or less remains open. Another closely related question is
whether we can find efficiently the next column given previ-
ous columns. Also left open for future research is further us-
age of the algorithm for finding the first column as a subrou-
tine in constructing codes based on trees or directed acyclic
graphs [18], and as a tool for incremental (column by col-
umn) construction of output codes.

Motivated by the intractability results for discrete codes
we introduced the notion of continuous output codes. We
described three optimization problems for finding good con-
tinuous codes for a given a set of binary classifiers. We have
discussed in detail an efficient algorithm for one of the three
problems which is based on quadratic programming. As a
special case, our framework also provides a new efficient al-
gorithm for multiclass Support Vector Machines. The im-
portance of this efficient algorithm might prove to be crucial
in large classification problems with many classes such as

46

Kanji character recognition. We also devised efficient im-
plementation of the algorithm. The implementation details
of the algorithm, its convergence, generalization properties,
and more experimental results were omitted due to the lack
of space and will be presented elsewhere. Finally, an impor-
tant question which we have tackled barely in this paper is
the problem of interleaving the code design problem with the
learning of binary classifiers. A viable direction in this do-
main is combining our algorithm for continuous codes with
the support vector machine algorithm.

Acknowledgement We would like to thank Rob Schapire
for numerous helpful discussions, to Vladimir Vapnik for his
encouragement and support of this line of research, and to
Nir Friedman and Ran Bachrach for useful comments and
suggestions.

References

[1] D. W. Aha and R. L. Bankert. Cloud classification using
error-correcting output codes. InArtificial Intelligence Ap-
plications: Natural Science, Agriculture, and Environmental
Science, volume 11, pages 13–28, 1997.

[2] E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multi-
class to binary: A unifying approach for margin classifiers.In
Machine Learning: Proceedings of the Seventeenth Interna-
tional Conference, 2000.

[3] Peter L. Bartlett. The sample complexity of pattern classifi-
cation with neural networks: the size of the weights is more
important than the size of the network.IEEE Transactions on
Information Theory, 44(2):525–536, March 1998.

[4] A. Berger. Error-correcting output coding for text classifica-
tion. In IJCAI’99: Workshop on machine learning for infor-
mation filtering, 1999.

[5] Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
and Charles J. Stone.Classification and Regression Trees.
Wadsworth & Brooks, 1984.

[6] V. Chvatal. Linear Programming. Freeman, 1980.
[7] Corinna Cortes and Vladimir Vapnik. Support-vector net-

works. Machine Learning, 20(3):273–297, September 1995.
[8] Ghulum Bakiri Thomas G. Dietterich. Achieving high-

accuracy text-to-speech with machine learning. InData min-
ing in speech synthesis, 1999.

[9] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass
learning problems via error-correcting output codes.Journal
of Artificial Intelligence Research, 2:263–286, January 1995.

[10] Tom Dietterich and Eun Bae Kong. Machine learning bias,
statistical bias, and statistical variance of decision tree algo-
rithms. Technical report, Oregon State University, 1995.

[11] R. Fletcher.Practical Methods of Optimization. John Wiley,
second edition, 1987.

[12] Trevor Hastie and Robert Tibshirani. Classification bypair-
wise coupling.The Annals of Statistics, 26(1):451–471, 1998.

[13] David Haussler. Decision theoretic generalizations of the PAC
model for neural net and other learning applications.Informa-
tion and Computation, 100(1):78–150, 1992.

[14] Klaus-U. Höffgen and Hans-U. Simon. Robust trainability
of single neurons. InProceedings of the Fifth Annual ACM
Workshop on Computational Learning Theory, pages 428–
439, Pittsburgh, Pennsylvania, July 1992.

[15] G. James and T. Hastie. The error coding method and PiCT.
J. of computational and graphical stat., 7(3):377–387, 1998.

[16] E. B. Kong and T. G. Dietterich. Error-correcting output cod-
ing corrects bias and variance. InProc. of the Twelfth Interna-
tional Conference on Machine Learning, p. 313–321, 1995.

[17] J.C. Platt. Fast training of Support Vector Machines using

sequential minimal optimization. In B. Schölkopf, C. Burges,
and A. Smola, editors,Advances in Kernel Methods - Support
Vector Learning. MIT Press, 1998.

[18] J.C. Platt, N. Cristianini, and J. Shawe-Taylor. Largemar-
gin dags for multiclass classification. InAdvances in Neural
Information Processing Systems 12. MIT Press, 2000. (To
appear.).

[19] J. Ross Quinlan.C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing internal representations by error propagation. In David E.
Rumelhart and James L. McClelland, editors,Parallel Dis-
tributed Processing – Explorations in the Microstructure of
Cognition, chapter 8, pages 318–362. MIT Press, 1986.

[21] Robert E. Schapire. Using output codes to boost multiclass
learning problems. InMachine Learning: Proceedings of the
Fourteenth International Conference, pages 313–321, 1997.

[22] Robert E. Schapire and Yoram Singer. Improved boostingal-
gorithms using confidence-rated predictions.Machine Learn-
ing, 37(3):1–40, 1999.

[23] V. N. Vapnik. Estimation of Dependences Based on Empirical
Data. Springer-Verlag, 1982.

[24] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[25] J. Weston and C. Watkins. Support vector machines for multi-

class pattern recognition. InProceedings of the Seventh Euro-
pean Symposium On Artificial Neural Networks, April 1999.

A Legend

Var. name Description Section
S Sample 2
M Matrix code 2
m Sample size 2
k No. of classes (No. of rows inM) 2
l No. of hypotheses (No. of columns inM) 2
i Index of an example 2
r Index of a class 2
y Correct label (class) 2
t Index of an hypothesis 2
� Slack variables in optimization problem 5
� Dual variables in quadric problem 5.2
� �

i;r

= Æ

y

i

;r

� �

i;r

5.2
A

p

, A Coefficient in reduced optimization prob. 6
B

p

, B Coefficient in reduced optimization prob. 6
C

p

Coefficient in reduced optimization prob. 6
�

D �� +

�

B

A

6
��

�

B

A

+

�

1

y

6

B Linear programming

Using Chvatal’s [6] notation, given the linear program:
max

x

P

n

j=1

j

x

j

subject to :
P

n

j=1

a

ij

x

j

� b

i

(i 2 I)

P

n

j=1

a

ij

x

j

= b

i

(i 2 E)

x

j

� 0 (j 2 R) (0-Constraints)

x

j

>

<

0 (j 2 F) (Unconstrained variables);
its dual program is:

min

y

P

m

i=1

b

i

y

i

subject to :
P

m

i=1

a

ij

y

i

�

j

(j 2 R)

P

m

i=1

a

ij

y

i

=

j

(j 2 F)

y

i

� 0 (j 2 I) (0-Constraints)

y

i

>

<

0 (j 2 E) (Unconstrained variables)

