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Abstract

Output coding is a general framework for solving
multiclass categorization problems. Previous re-
search on output codes has focused on building
multiclass machines givgmredefined output codes.

In this paper we discuss for the first time the prob-
lem of designing output codes for multiclass prob-
lems. For the design problem of discrete codes,
which have been used extensively in previous works,
we present mostly negative results. We then in-
troduce the notion of continuous codes and cast
the design problem of continuous codes as a con-
strained optimization problem. We describe three
optimization problems corresponding to three dif-
ferent norms of the code matrix. Interestingly, for
the I norm our formalism results in a quadratic
program whose dual doast depend on the length

of the code. A special case of our formalism pro-

of two stages. In the training stage we need to construct
multiple (supposedly) independent binary classifiers edich
which is based on a different partition of the set of the label
into two disjoint sets. In the second stage, the classifipati
part, the predictions of the binary classifiers are combtoed
extend a prediction on the original label of a test instance.
Experimental work has shown that output coding can often
greatly improve over standard reductions to binary prolslem
[9, 10, 16, 1, 21, 8, 4, 2]. The performance of output coding
was also analyzed in statistics and learning theoretic con-
texts [12, 15, 22, 2].

Most of the previous work on output coding has concen-
trated on the problem of solving multiclass problems using
predefined output codes, independently of the specific ap-
plication and the class of hypotheses used to construct the
binary classifiers. Therefore, by predefining the outputcod
we ignore the complexity of the induced binary problems.
The output codes used in experiments were typically con-
fined to a specific family of codes. Several family of codes

have been suggested and tested so far, such as, comparing
each class against the rest, comparing all pairs of claiges [
2], random codes [9, 21, 2], exhaustive codes [9, 2], and lin-
ear error correcting codes [9]. A few heuristics attempting
modify the code so as to improve the multiclass prediction
accuracy were suggested (e.g., [1]). However, they did not
yield significant improvements and, furthermore, they lack
any formal justification.

In this paper we concentrate on the problem of designing
a good code for a given multiclass problem. In Sec. 3 we
study the problem of finding the first column of a discrete
Many applied machine learning problems require assigning code matrix. Given a binary classifier, we show that finding
labels to instances where the labels are drawn from a finitea good first column can be done in polynomial time. In con-
set of labels. This problem is often referred to as multglas trast, when we restrict the hypotheses class from which we
categorization or classification. Examples for machinemlea  choose the binary classifiers, the problem of finding a good
ing applications that include a multiclass categorizatiom- first column becomes difficult. This result underscores the
ponent include optical character recognition, text cfassi difficulty of the code design problem. Furthermore, in Sec. 4
tion, phoneme classification for speech synthesis, medicalwe discuss the general design problem and show that given
analysis, and more. Some of the well known binary classi- a set of binary classifiers the problem of finding a good code
fication learning algorithms can be extended to handle mul- matrix is NP-complete.
ticlass problem (see for instance [5, 19, 20]). A general ap- Motivated by the intractability results we introduce in
proach is to reduce a multiclass problem to a multiple binary Sec. 5 the notion of continuous codes and cast the design
classification problem. problem of continuous codes as a constrained optimization

Dietterich and Bakiri [9] described a general approach problem. As in discrete codes, each column of the code ma-
based on error-correcting codes which they termed error-trix divides the set of labels into two subsets which are la-
correcting output coding (ECOC), or in short output cod- beled positive ) and negative). The sign of each entry
ing. Output coding for multiclass problems is composed in the code matrix determines the subset associationr(

vides a multiclass scheme for building support vec-
tor machines which can be solved efficiently. We
give a time and space efficient algorithm for solv-
ing the quadratic program. Preliminary experiments
we have performed with synthetic data show that
our algorithm is often two orders of magnitude faster
than standard quadratic programming packages.

1 Introduction

35



—) and the magnitude corresponds to the confidence in thishy, ..., h;. We denote the vector of predictions of these clas-
association. Given this formalism, we seek an output code sifiers on an instance ash(z) = (hi(x),...,h(z)). We
with small empirical loss whose matrix norm is small. We denote theth row of M by M,..

describe three optimization problems corresponding tethr Given an example we predict the labej for which the
different norms of the code matri¥;, /> and/,,. Forl; and row M, is the “closest” toh(z). We will use a general notion
- we show that the code design problem can be solved byfor closeness and define it through an inner-product functio
linear programming (LP). Interestingly, for ttie norm our K : R' x R = R. The higher the value ok (h(z), M,)
formalism results in a quadratic program (QP) whose dual s the more confident we are thais the correct label of:
doesnor depend on the length of the code. Similar to sup- according to the classifiers. An example for a closeness
port vector machines, the dual program can be expressed ifunction is K (@,7) = @ - ©. It is easy to verify that this
terms of inner-products between input instances, hence wechoice of K is equivalent to picking the row af/ which
can employ kernel-based binary classifiers. Our framework attains the minimal Hamming distanceftar).

yields, as a special case, a direct and efficient method for  Gjven a classifiet (z) and an exampléz, y), we say
constructing multiclass support vector machine. thatH (=) misclassified the exampleH (z) # y. Let[x] be

_ The number of variables in the dual quadratic problem 1 f the predicater holds and 0 otherwise. Our goal is there-
is the product of the number of samples by the number of fore to find a classifier () such that-L S [H (x) #
classes. This value becomes very large even for small daiaseyl,]] is small. We would like to note inmpaggng that in this
Forinstance, an English letter recognition problemwiti00  paper we mainly focus on thenpirical loss minimization
training examples would requirz5,000 variables. In this  problem. As in more standard classification problems, the
case, the standard matrix representation of dual quadratiqoss on a separate test set (generalization error) can also b
problem would require more than 5 Giga bytes of mem- theoretically bounded given appropriate assumptionsgusin
ory. We therefore describe in Sec. 6.1 a memory efficient niform-convergence theory [3, 13, 23]. We leave this for
algorithm for solving the quadratic program for code design fytyre research.

Our a_Igorithm is reminiscent of Platt’s_sequential minimal When! is small there might be more then one row of
optimization (SMO) [17]. However, unlike SMO, our algo- — 57 \which attains the maximal value according to the func-
rithm optimize on each round a reduced subset of the vari- tjon . To accommodate such cases we will relax our def-
ables that corresponds to a single example. Informally, ournition and define a classifieF (X) based on a codé/
algorithm reduces the optimization problem to a sequenceiy pe the mapping (z) : X — 2Y given by H(z) =

of small problems, where the size of each reduced problem{y | K (h(z), M,) = max, K (h(z), M,)}. In this case we

is equal to the number of classes of the original multiclass pick one of the labels irf () uniformly at random, and
problem. Each reduced problem can again be solved Us-ge the expected error &f(z)

ing a standard QP technique. However, standard approaches a

would still require large amount of memory when the num- _ m ) )

ber of classes is large and a straightforward solution i3 als es(M, h) © L Z (1 - [[%ZM)

time consuming. We therefore further develop the algorithm Mz [ H ()]

and provide an analytic solution for the reduced problems m o ,

and an efficient algorithm for calculating the solution. The = 1- 1 Z M (1)
run time of the algorithm is polynomial and the memory re- mia | H ()]

guirements are linear in the number of classes. We conclude i

with simulations results showing that our algorithmis asle . !N the contextof output codes, a multiclass mapif@:)
two orders of magnitude faster than a standard QP techniquelS thus determined by two parameters: the coding maifix
even for small number of classes. and the set of binary classifiei$z). Assume that the binary

classifiershy (z) ... hi(z) are chosen from some hypothesis
classH. The following natural learning problems arig@)

2 Discrete codes Given a matrix), find a seth which suffers small empirical

Let S = {(z1,y1),---,(xm,ym)} be a set ofm training loss. (b) Given a set of binary classifiefs find a matrixA/
examples where each instanegbelongs to a domair’. which has small empirical loss(c) Find both a matrixi/

We assume without loss of generality that each lahdb and a set: which have small empirical loss.

an integer from the se¥ = {1,...,k}. A multiclass clas- Previous work has focused mostly on the first problem.
sifier is a functiond : X — ) that maps an instance In this paper we mainly concentrate on the code design prob-

into an elemeny of ). In this work we focus on a frame- lem (problemb), that is, finding a good matriX/. A sum-
work that usesoutput codes to build multiclass classifiers ~ mary of the notation is given in Appendix A.

from binary classifiers. A discrete output catleis a matrix

of sizek x | over{—1,+1} where each row ofif corre- 3 Finding the first column of an output code
spond to a clasg € V. Each column of\/ defines a parti-

tion of ) into two disjoint sets. Binary learning algorithms Assume we are given a single binary classifiefz) and we
are used to construct classifiers, one for each colaroh want to find the first (or the single) column of the mathik
M. That is, the set of examples induced by coluhai M which minimizes the empirical loss; (M, ). For brevity,
is (1, My y,), ..., (Tm, My,,.). This setis fed as training  let us denote byi = (u; ...u;)? the first column of\/. We
data to a learning algorithm that finds a hypothégis X’ — now describe an efficient algorithm that findgivenh, (z).
{—1,+1}. This reduction yieldé different binary classifiers  The algorithm’s running time is polynomial in the size of the
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label sett = |Y| and the sample size. First, note thatin ~ Theorem 1 Let S = {(z1,¥1), ..., (Tm,Ym)} be a set of

this case m training examples, where each label is an integer from the
yi € H(z;) & hi(x;) = uy, - 2 set {1,...,k}. Let H be a binary hypothesis class. Given
Second, note that the sample can be divideddtequiv- @ lypothesis hi(z) € H, the first column of an output code

alence classes according to their labels and the classificaich minimizes the empirical loss defined by Eq. (1) can be
tion of hy(z). Forr = 1,...,kandb € {—1,+1}, de-  found inpolynomialtime.

finea? = L [{i:y; = r, hi(x;) = b}| to be the fraction of . : :
m L ! ! a : To conclude this section we use a reduction from SAT
the examples with label and classification (according to to demonstrate that if the learning algorithm (and its cor-

k
hi(x)). Forb € {~1,+1}, denote by’ = 37/, a7, and let responding class of hypotheses from whighcan chosen

w = |{r : u, = b}| be the number of elements inwhich from) is of a very restricted form then the resulting learn-
are equal td. (For brevity, we will often uset+ and — to ing problem can be hard. Lek(z; ...z,) be a boolean
denote the value df) Let formula over the variables; € {—1,+1} where we in-
B 1O [yi € H(z)] . terpretz = —1 as False and = +1 as True. Define
es(M,h) & = Z Wi © 2L es(M,h). (3) X = {z;,Z;}, U{L} to be the instance space. L&t=
m = |H(z)]| {(zi,i)}", U{(Z:,i +n)}", U{(L,2n + 1)} be a sam-

ple of sizem = 2n + 1, where the labels are taken from
Y = {1,...,2n + 1}. Define the learning algorithniy
as follows. The algorithm’s input is a binary labeled sam-
ple of the form{(z;,:), (Zi, yisn), (L, y2ns1) ey I

We can assume without loss of generality that not all the ele-
ments inz are the same (otherwisgs (M, h) = L, which is
equivalent to random guessing). Hence, the sizH @f) is :

wt h(z) = +1 ¥ (zy,...,x,) = True and for alli y; ® y;y, = True,
|H(z)| = { w= h(z) = -1 4 then the algorithm returns an hypothesis which is condisten
- ' with the sample (the sample itself). Otherwise, the albarit
Using Egs. (2) and (4), we rewrite Eq. (3), returns the constant hypothesig,z) = 1 or h(z) = 0,
~ 1 1 which agrees with the majority of the sample by choosing
&s(Mb) = — > ] h(z) = argmaxpeq_1113 |{i : y; = b}|. Note that the
iy €H(z:) ¢ learning algorithm is non-trivial in the sense that the hypo
1 1 esis it returns has an empirical loss of less tih#n on the
= — Z TH (a1 binary labeled sample.
m ish(zi)=uy, | H (:)] We now show that a multiclass learning algorithm that
& L minimizes the empirical losss over both the first column
_ 1 Z { = u,=+l1 @ and the hypothesik, (z) which was returned by the algo-
m = e~ w% up = —1 rithm Ly, can be used to check whether the formzles sat-
T h(a)—ur isfiable. We need to consider two cases. Wheén , ..., z,,)
k af 41 = True andforalli y; ®y;+, = True, then using the def-
= > wr ur ) (5) inition from Eq. (3) we gets = 1 (n% + (n+ 1)n+r1) =
et wm B 2 |f the above conditions do not holdl(z) is constant), let
Using Eg. (5) we now can expadd (M, h), v > n + 1 be the number of examples which the hypothe-
kg - Sis hy (x) cIasiifies1 corre(itly. Then, using Eqg. (3) again we
N _ 1 a, 1. ‘a, obtain{s = - (v,) = --. Thus, the minimum ots is
Es (MR =D [2(1 Fun)yr o) } achieved if and(onlz/ if the formul@ is satisfiable. There-

T fore, a learning algorithm fok, (z) anda can also be used
' {u (ai’ _ay )} L1 Z (aff Lo ) as an oracle for the satisfiability f.
- "\wt w- 2 While the setting discussed in this section is somewhat
superficial, these results underscore the difficulty of tiodp
(a+ N a” > ®) lem. We next show that the problem of finding a good out-
-/ put code given a relatively large set of classifig(s) is in-
tractable. We would like to note in passing that efficient al-
For a particular choice ab* (andw~= = k — w+) &g is gori_thm for fin(_jing a single C(_)Iulmn might be qseful in other
maximized (and s is minimized) by setting., = +1 at the settings. For instance in building trees or directed a_cych
. . . . + - graphs for multiclass problems (cf. [18]). We leave this for
w™ indices which attain the highest values (0,?,# — #)

future research.
and set the rest— of the indices to—1. This can be done

efficiently in & log k time using sorting. Therefore, the best 4 Finding a general discrete output code

choice ofa is found by enumerating all the possible values

forw® € {1,...,k — 1} and choosing the value aft, w~ In this section we prove that given a setldfinary classi-
which achieves the maximal value for Eq. (6). Since it takes fiers i(z), finding a code matrix which minimizes the em-
m operations to calculater anda,, the total number of op-  pirical losses (M, h) is NP-complete. Given a sampfe=
erations needed to find the optimal choice for the first column {(z1,%1), - - -, (¥m, ym)} and a set of classifiers let us de-

is O(m + k? log k). We have proven the following theorem. note byS = {(h1,y1), .- -, (hm, ym)} the evaluation oh(-)

T

TS o R AU Y
- 1rw+w*

T
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N =
= | Mw

wt  w
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on the samplé, whereh; ' h(z;) is the predictions vector
for theith sample. We now show that even whiee- 2 and

K (u,v) = u - v the problem is NP-complete. (Clearly, the
problem remains NPC fdr > 2). Following the notation of

example inSY which corresponds to ¢ U we get
My-h=1<2=DM,-h,

and these examples are correctly classified. We thus have

previous sections, the output code matrix is composed of two shown that the total number of mistakes according/fds

rows M; and M and the predicted class for instancgis
H(z;) = argmax,—1 »{M, - h;}. For the simplicity of the
presentation of the proof, we assume that both the ddde
and the hypotheses’ valugsare over the sef0, 1} (instead

of {—1, +1}). This assumption does not change the problem
since there is a linear transform between the two sets.

Theorem 2 The following decision problem is NP-complete.
Input: A natural number q, a labeled sample

S = {(hlvyl)a ) (hmaym)}’
where y; € {1,2}, and h; € {0,1}".
Question: Does there exist a matrix M € {0,1}""" such
that the classifier H(z) based on an output code M makes

at most q mistakes on S.

2xl

Proof: Our proof is based on a reduction technique intro-
duced by Hoffgen and Simon [14]. Since we can check in
polynomial time whether the number of classification errors
for a given a code matrix/ exceeds the boung the prob-
lem is clearly in NP.

We show a reduction to Vertex Cover in order to prove
that the problem is NP-hard. Given an undirected gi@ph
(V, E), we will code the structure of the graph as follows.
The samplé5 will be composed of two subsetS” andS"
of size2|E| and|V| respectively. We sdt= 2|V| + 1. Each
edge{v;,v;} € E is encoded by two examplés, y) in SE.
We set for the first vector th; = 1, h; = 1, iy = 1 and0
elsewhere. We set the second vectato, = 1, hjy, = 1,
h; = 1 and0 elsewhere. We set the labgbf each example
in S¥ to 1. Each exampléh, y) in SV encodes a node €
V whereh; = 1, hiy,, = 1, by = 1 and0 elsewhere. We
set the labely of each example irf" to 2 (second class).
We now show that there exists a vertex coleiC V' with
at mostq nodes if and only if there exists a coding matrix
M € {0, 1}2” that induces at mostclassification errors on
the samples.

(=) : LetU C V be a vertex cover such thHf| < g.
We show that there exists a code which has at maosts-
takes onS. Letu € {0, l}‘v| be the characteristic function
of U, thatis,u; = 1if v; € U andu; = 0 otherwise.
Define the output code matrix to be; = (u,u,1) and
My = (—u,-u,0). Here,~u denotes the component-wise
logical not operator.

Sincel is a cover, for each € S” we get

M1BZ2 andMQ'BS]. = MQ'B<M1'B.
Therefore, for all the examples ifi” the predicted label
equals the true label and we suffeerrors on these exam-

ples. For each example ¢ SV that corresponds to a node
v € U we have

Mlﬁ:3>0:M2iL
Therefore, these examples are misclassified (Recall tat th
label of each example 8" is 2). Analogously, for each
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Ul <q.

(<) : Let M be a code which achieves at mgstis-
takes onS. We construct a subsét C V' as follows. We
scanS and add td/ all verticesv; corresponding to misclas-
sified examples frons". Similarly, for each misclassified
example fronS ¥ corresponding to an edde;, v, }, we pick
eitherv; orv; at random and add it to'. Since we have at
mostq misclassified examples ifi the size ofU/ is at most
g. We claim that the sdV/ is a vertex cover of the grapf.
Assume by contradiction that there is an edgg v;} for
which neitherv; nor v; belong to the set/. Therefore, by
construction, the examples corresponding to the vertices
andv; are classified correctly and we get,

My ; + My iy + My
My j+ My jon + My

< Mo+ My iy + My
< M+ My jyn + My

Summing the above equations yields that,

My + Myj+ My jpn + My jyn +2M; <

My i+ My j+ My jpn + Mo jyn +2Msy . (7)

In addition, the two examples corresponding to the edge
{vi,v;} are classified correctly, implying that

Mii+DMj+Myg > My;+ Myj;+ My,
Myjon+ M jon+Myyg > Mojyn+ Mo jpn + Moy

which again by summing the above equations yields,

My g+ My j+ My jpn + My jyn +2My; >

My + Mz j + Maipn + M2 jin +2Mzy . (8)

Comparing Egs. (7) and (8) we get a contradiction. W

5 Continuous codes

The intractability results of previous sections motivatea
laxation of output codes. In this section we describe a natu-
ral relaxation where both the classifiers’ output and thescod
matrix are over the reals.

As before, the classifieif (x) is constructed from a code
matrix M and a set of binary classifiekgz). The matrixi/
is of sizek x [ overR where each row al/ correspondsto a
classy € ). Analogously, each binary classifief(z) € H
is a mappingh:(z) : X — R. A columnt of M defines
a partition of) into two disjoint sets. The sign of each el-
ement of thefth column is interpreted as the set (+1 or -1)
to which the class belongs and the magnitud&/, ;| is in-
terpreted as the confidence in the associated partition: Sim
ilarly, we interpret the sign ofi.(z) as the prediction of the
set (+1 or -1) to which the label of the instancbelongs and
the magnituddh,(x)| as the confidence of this prediction.
Given an instance, the classifierH (x) predicts the label
y which maximizes the confidence functidt(h(z), M,),
H(z) argmax,cy{K(h(z), M,)}. Since the code is
over the reals, we can assume here without loss of generality



thatexactly one class attains the maximum value according
to the functionkK'. We will concentrate on the problem of
finding a good continuous code given a set of binary classi-
fiersh.

The approach we will take is to cast the code design prob-
lem as constrained optimization problem. Borrowing the
idea of soft margin [7] we replace the discrete 0-1 multiglas
loss with the linear bound

max{K (h(es), M) + 1~ by} — K(R(e:), 3y,) . (9)

This formulation is also motivated by the generalizatioalan
ysis of Schapire et al. [2]. The analysis they give is based on
the margin of examples where the margin is closely related
to the definition of the loss as given by Eq. (9).

Put another way, the correct label should have a confi-
dence value which is larger by at least one than any of the
confidences for the rest of the labels. Otherwise, we suffer
loss which is linearly proportional to the difference begne

The corresponding optimization problem is,

miny  BIM|, + > & (14)
i=1
subject to :
Vi,?" K(FL(ZEz),M‘%) —K(ﬁ(azz),Mr) Z bi,r —fi

for some constant > 0. This is an optimization problem
with “soft” constraints. Analogously, we can define an opti-
mization problem with “hard” constraints,

m
min s Z &i
i=1
subject to :
Vi, r

K (h(x;), My,) — K (h(z:), My) > bip — &
||M]|, < A, for somed >0
The relation between the “hard” and “soft” constraints and

the confidence of the correct label and the maximum amondtheir formal properties is beyond the scope of this paper.

the confidences of the other labels. The bound on the empir-

ical loss is then,

es(M,h) = % > [H(zs) # yi]

i=1

< = > [masc{ K (A(e), M) +1 = 0,,.0)

_K(h(xi)7 Myz)] )

whered; ; equalsl if ¢ = j and0 otherwise. We say that a
sampleS is classified correctly using a set of binary classi-
fiersh if there exists a matri¥/ such that the above loss is
equal to zero,

Vi mgx{K(h(a:,'), M) +1—06y, ,}— K(h(x;),M,,)=0.
(10)
Denote by
bir=1—10y,,. (11)
Thus, a matrixM that satisfies Eq. (10) would also satisfy
the following constraints,

Vi, r K(E(mz)v Myz) - K(E(wz)a Mr) > by, (12)

We view a codeV/ as a collection of vectors and define
the norm of M to be the norm of the concatenation of the
vectors constituting/. Motivated by [24, 2] we seek a ma-
trix M with a small norm which satisfies Eq. (12). Thus,
when the entire samplg can be labeled correctly, the prob-
lem of finding a good matri¥/ can be stated as the follow-
ing optimization problem,

miny M,
subjectto: Vi,r K (h(x;), M,,) — K (h(z;), M) > b;,

Herep is an integer. Note that of the constraints for = y;
are automatically satisfied. This is changed in the follawin

For further discussion on the relation between the problems
see [24].

5.1 Design of continuous codes using Linear
Programming

We now further develop Eq. (14) for the cages: 1,2, co.

We deal first with the cases= 1 andp = oo which resultin

linear programs. For the simplicity of presentation we will

assume thak (z,0) =4 -7 .

For the case@ = 1 the objective function of Eq. (14) be-
comesB }_, | |M; |+, & We introduce a set of auxiliary
variablesy; , = |M; | to get a standard linear programming
setting,

m
minyea B i+ Y &
r,t =1

subjectto: Vi,r & + h(z;) - My, — h(z;) - M, > b,
V’I”,t At Z :I:Mnt

To obtain its dual program (see also App. B) we define one
variable for each constraint of the primal problem. We use
n;.» for the first set of constraints, andfr for the second set.
The dual program is,

max, & E 1irbiy
1,7

>0

subjectto: Vi, 7.t 0ir, % Yer
Vi Yy =1
'
vrt vt . =B
) ’th rYt,T
Vit Y he(@i) By, — min] = = + iy
i

derivation for the non-separable case. In the general case a  The case op = oo is similar. The objective function of

matrix M which classifies all the examples correctly might
not exist. We therefore introduce slack varialdes- 0 and
modify Eq. (10) to be,

Vi mgx{K(i_L(a:i), M.)+1-8,, .} —K(h(z;), M

) Yi

) =& .

(13)
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Eq. (14) becomeg max; , |M; .| + Y, &. We introduce a
single new variabler = max; , | M; | to obtain the primal
problem,

m
miny e Bot+ Y &

i=1



subjectto: Vi,r & + h(x;) - My, — h(z;) - M, > b,
vr,t o> +M,;

Following the technique fop = 1, we get that the dual pro-
gramis,

maxy, E ni,Tbi,r
i,7

subjectto: Vi,r,t iy, Y, >0
Vi Y mig=1
T
> i+ ) =8

t,r

vr, ¢ th(xi)[‘syi,r — Nig] = _'VtJ,rr + Ve
i

Both programsyt = 1 and0 = oo) can be now solved using
standard linear program packages.

5.2 Design of continuous codes using Quadric
Programming

We now discuss in detail Eq. (14) for the cgse= 2. For

convenience we use the square of the norm of the matrix

(instead the norm itself). Therefore, the primal program be
comes,

1 ) m
PN + 36

Vi, r &+ h(x;) - My, — h(z;) - My > b r

minM,g (15)

subject to:

We solve the optimization problem by finding a saddle point

of the Lagrangian :
1 - ) m
T i=1

+ Zm« Ni,r [ﬁ(xz) . Mr — FL(ZL”z) . Myi — fz + bz}r]

subjectto¥i,r n;, >0 (16)

The saddle point we are seeking is a minimum for the primal

variables (/, £), and the maximum for the dual oneg.(To
find the minimum over the primal variables we require,
1o

afz Zr:m,r =0 = erm,r =1 (17)

Similarly, for A, we require,

0
rL="0 (18)
= Zm,rﬁ('ri) - Z B('rl) (Z 7h‘,w> +ﬂMr =0
i 1, Yi=T Tl
=1
= Mr = ﬂil [Z ﬁ(wi)((syi,r - 7]@',7“)] (19)

Eq. (19) implies that when the optimum of the objective
function is achieved, each row of the matriX is a linear
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combination ofi(z;). We say that an examplés asupport
pattern for classr if the coefficient(d,, , — n;) of h(z;)

in Eq. (19) is not zero. There are two settings for which an
examplei can be a support pattern for classThe first case

is when the labej; of an example is equal tq then theith
example is a support patterrjf . < 1. The second case is
when the label; of the example is different from, then the

ith pattern is a support patterrvjf . > 0.

Loosely speaking, since for allandr we haver,; , > 0
and)_ n;, = 1, the variabley; , can be viewed as a distri-
bution over the labels for each example. An exanipliéects
the solution forM (Eq. (19)) if and only iff; in not a point
distribution concentrating on the correct lalpel Thus, only
the questionable patterns contribute to the learning poce

We develop the Lagrangian using only the dual variables.
Substituting Egs. (17) and (19) into Eq. (16) and using vari-
ous algebraic manipulations, we obtain that the target-func
tion of the dual program is,

i,J T

(Details are omitted due to the lack of space.) Lebe the
vector with all components zero, except for tle compo-
nent which is equal to one, and lgtbe the vector whose
components are all one. Using this notation we can rewrite
the dual program in vector form as

Q(n)
subjectto: Vr #; >0andf;-1=1

maxy

(20)
where

Q(n)

=583 e - Bep)] [y =70 - (1, — )]
i,J
+ Z i - bi

Itis easy to verify tha(n) is strictly convexiny. Since
the constraints are linear the above problem has a single opt
mal solution and therefore QP methods can be used to solve
it. In Sec. 6 we describe a memory efficient algorithm for
solving this special QP problem.

To simplify the equations we denote by = 1,, — 7;
the difference between the correct point distribution dred t
distribution obtained by the optimization problem, Eq.)19
becomes,

M, =81 h(zi)ri, (21)
(2

Since we look for the value of the variables which maximize
the objective functior@ (and not the optimum of) itself),
we can omit constants and write the dual problem given by
Eqg. (20) as,

(1)

subjectto: Vr 7, <1, and7;-1=0

max,

(22)



where In Table 1 we summarize the properties of the programs
1 ~ ~ ~ discussed above. As shown in the table, the advantage of
T)=——p3"1 Z[h(m) ~h(z)|(7 - T5) — Zﬂ- - b; usingl» in the objective function is that the number of vari-
2 i ; ables in the dual problem in only a function of érandm
and doesior depend on the number columhé M. The
number of columns inV/ only affects the evaluation of the
inner-product kernek.
H(z) = argmax {B(m) . Mr} The formalism giv_en_by Eq. (14) can also be used to con-
r struct the code matrix incrementally (column by column).
We now outline the incremental (inductive) approach. How-
= argmaX{ 187 Zh (zi)7i 7‘] } ever, we would like to note that this method only applies
whenK (v, @) = v - @. In the first step of the incremental al-
= argmax {ﬂ ZT, r

B gorithm, we are given a single binary classifig(z) and we
h(ml)] }
= argmax{ZT” h a:z)]} . (23) min ﬁ||M||p+Z§z (27)

Finally, the classifiet () can be written in terms of the
variabler as,

need to construct the first column &f. We rewrite Eq. (14)
in a scalar form and obtain,
i=1

As in Support Vector Machines, the dual program and ~ Subjectto : Vi,r hy (i) My, — hy(zi) My > biyr — & -
the classification algorithm depemaly on inner products  Here,3 > 0 is a given constant arigf,, = 1 — §,,, ., as be-

of the formh(xz;) - h(z). Therefore, we can perform the fore, Forthe rest of the columns we assume inductively that
calculations in some high dimensional inner-product space p, (z), ..., h,(z) have been provided and the fitstolumns

Z using a transformatlor@ R' — Z. We thus replace  of the matrix)/ have been found. In addition, we are pro-
the inner-product in Eq. (22) and in Eq. (23) with a general _. ; : . def ,,

inner-product kernek that satisfies Mercer conditions [24]. \r/]gidc\glﬁ?n?] n\?vv; ag:é%g lﬁﬁg'gé;’;\}v(gg“;m&g ()irigre;[(he%

The general dual programiis therefore, [ + 1). We substitute the new classifier and the matrix in

max, Q(r) Eq. (13) and get,

subjectto: Vi 7, <1, andr-1=0 (24) Vi max{h(x;) - M, + I'(z;)M. +1—6,, .} —

where: (ﬁ('rl) ’ Myz + h,(xl)M;z) =& -
=_ /3 ZK B ), h(z )) (7 - 75) — Zﬂ"gi The_constraﬁints appearing in E_q, (14)7now become

! h(zi) - My, + h' (i) My, — h(w;) - My — b (i) My >
and the classification rulfl (z) becomes, 1- yl, &
= h' ()M, ( )M, >

H(z) = arg max {Zn K (h(z), h(w,))} (25) —[h(wi) —h(w;) My +1 =0y, — & .

We now redefinebi, to be—[h(z;) - My, — h(z;) - M,] +
The general framework for designing output codes using 1 —§,, ... Itis straightforward to verify that this definition of
the QP program described above, also provides, as a special; . results in an equation of the same form of Eq. (27). We
case, a new algorithm for building multiclass Support Vec- can thus apply the same algorithms designed for the “batch”
tors Machines. Assume that the instance space is the vectocase. In the case &f andl.,, this construction decomposes

spaceR™ and definéi(z) def (thusl = n), then the primal @ single problem intd sub-problems with fewer variables

program in Eq. (15) becomes and constraints. However, féy the size of the program re-
mains the same while we lose the ability to use kernels. We
IJI\}iIEI SBIMIE+ >0 & therefore concentrate on the batch case for which we need to

_ _ find the entire matrix at once.
subjectto: Vi,r &+ x;- My, —&; - M, > b;, (26)

Note that fork = 2 Eq. (26) reduces to the primal pro- 6 An efficient algorithm for the QP problem

gram of SVM, if we takeM, = —M, andC = 3~!. We The quadratic program presented in Eq. (24) can be solved
would also like to note that this special case is remmlscent using standard QP techniques. As shown in Table 1 the dual
of the multiclass approach for SVM's suggested by Weston program depends omk variables and hagm + m con-

and Watkins [25]. Their approach compared the confidencestraints all together. Converting the dual program in E¢) (2

K (z, M,) to the confidences afil other labelsK (z, M,) to a standard QP form requires storing and manipulating a
and hadm(k — 1) slack variables in the primal problem. In  matrix with (mk)? elements. Clearly, this would prohibit
contrast, in our framework the confidenk€z, /) is com- applications of non-trivial size. We now introduce a mem-
pared tomax,, K (z, M,) and has onlyn slack variables  ory efficient algorithm for solving the quadratic optimiiat

in the primal program. problem given by Eq. (24).
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I l> loo
Primal | Variables m + 2kl m4+kl | m+kl+1
0-Constraints| 0 0 0
Constraints km + 2kl | km km + 2kl
Dual Variables km + 2kl | km km + 2kl
O0-Constraints| km + 2kl | km km + 2kl
Constraints m + 2kl m m4+kl+1

Table 1: Summary of the sizes of the optimization problems
for different norms. (See Appendix B for the definitions of
the constraints in linear programming.)

First, note that the constraints in Eq. (24) can be divided
into rn disjoint subset§r; < 1,, ,7; - 1 = 0},. The algo-
rithm we describe works in rounds. On each round it picks a
single sef{7; < 1,, ,7; -1 = 0}, and modifies; so as to op-
timize the reduced optimization problem. The algorithm is
reminiscent of Platt's SMO algorithm [17]. Note, however,
that our algorithm optimizesne example on each round, and
not two as in SMO.

Let us fix an example index p and write the objective
function only in terms of the variables,. For brevity, let
K;j = K (h(z;), h(z;)). We isolater, in Q.

_ \def 1 _ _ _ 7
(1) =~ 58 N Ki(mem) =D T b
i,j i
1 _ _ _ _
= _55 1Kp,p(7p'7'p)_ﬂ 1ZKi7p(Tp'Ti)
i#p
1 _ _
—55_1 Z K,‘J(ﬂ"i’j) —f'p'bp—Zﬂ'bl‘
INES 2 i#p
1, o - _ _
= _iﬁ 1Kp,p(7p'7p)_7p'[bp+ﬁ 12Ki,p7i]
i£p
1 o R
+=38 Py K7 ) = Y7 bil
i,j#p i#p
1
= _iAp(fp'%p)_Bp'%p"'Cp (28)
where,
A, = Bile7p>0 (29)
Bp = Bp+5712Ki7p7:i (30)
iZ£p
1 o -
Cp = _iﬂ 1 Z Ki,j(Ti'Tj)_ZTi'bi (31)
4,J#P i#p

For brevity, we will omit the index and drop constants
(that do not affect the solution). The reduced optimization
hask variables and: + 1 constraints,

7

Qﬁ):—%Aﬁ~ﬂ—B-
7<lyand7-1=0

mazx,
subject to : (32)

Although this program can be solved using a standard QP
technique, it still requires large amount of memory when

42

k is large, and a straightforward solution is also time con-
suming. Furthermore, this problem constitutes the core and
inner-loop of the algorithm. We therefore further develop t
algorithm and describe a more efficient method for solving
Eq. (32). We writeQ(7) in Eq. (32) using a completion to
quadratic form,

1

Q(f) = —EA(%-f) -B-7
1.._ B , B B-B

= AT ) T S
SinceA > 0 the program from Eq. (32) becomes,

min, Q) = |7l

subjectto: v < Dandv-1=D -1-1

where, - -

_ _ B _ B _

In Sec. 6.1 we discuss an analytic solution to Eq. (33) and in
Sec. 6.2 we describe a time efficient algorithm for computing
the analytic solution.

6.1 An analytic solution

While the algorithmic solution we describe in this section
is simple to implement and efficient, its derivation is quite
complex. Before describing the analytic solution to Eq.)(33
we would like to give some intuition on our method. Let us
fix some vectorD and denoteu = © - 1. First note that

v = D is not a feasible point since the constraint1 =

D -1 — 1is not satisfied. Hence for any feasible point some
of the constrainty < D are not tight. Second, note that
the differences between the bounds and the variables,
sum to one. Let us induce a uniform distribution over the
components of. Then, the variance af is

1

2 2
ﬁll

g

B - [B4]? = Il -
Since the expectation is constrained to a given value, the
optimal solution is the vector achieving the smallest vari-
ance. That is, the components ofioshould attain similar
values, as much as possible, under the inequality contstrain
7 < D. In Fig. 1 we illustrate this motivation. We picked
D = (1.0,0.2,0.6,0.8,0.6) and show plots for two different
feasible values for. The x-axis is the index of the point
and the y-axis designates the values of the components of
v. The norm of on the plot on the right hand side plot is
smaller than the norm of the plot on the left hand side. The
right hand side plot is the optimal solution for The sum
of the lengths of the arrows in both plotsis- 1 — v - 1.
Since both sets of points are feasible, they satisfy the con-
straintv - 1 = D - 1 — 1. Thus, the sum of the lengths of the
“arrows” in both plots is one. We exploit this observation in
the algorithm we describe in the sequel.

We therefore seek a feasible vectowhose most of its
components are equal to some threshl@ivend we de-
fine a vectorw whose itsrth component equal to the mini-
mum betweerd andD,., hence the inequality constraints are
satisfied. We define

0
D,

0 < D,
0 > D,

v,

(34)



v=[0.00.20.60.80.6], [|v] =1.4

L L L L L |
0 1 2 3 4 5 6

v=[0502050505], ||v]| =1.04

L L L L L |
0 1 2 3 4 5 6

Figure 1: An illustration of two feasible points for the re-
duced optimization problem with = (1,0.2,0.6,0.8,0.6).

The x-axis is the index of the point, and the y-axis denotes
the values. The bottom plot has a smaller variance hence it
achieves a better value f@. .,

We denote by

Using F', the equality constraint from Eq. (33) becomes
F@) =D -1-1.

Let us assume without loss of generality that the compo-
nents of the vectop are given in a descending ordér; >
D, > ... Dy, (this can be done ik log k time). LetDy4q =
—oo andDy = oo. To prove the main theorem of this section
we need the following lemma.

Lemma 3 F(0) is piecewise linear with a slope r in each
range (Dyy1, D) forr =0,... k.
Proof: Let us develofF'(6).

k

>

k
> {6 > D,]D, +[6 < D,]6}

r=1

k k
Y [6> DD, +6> [0 < D,]
r=1 r=1

0

9<D,
F(0) D, 85D
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d(2)

<}

Figure 2: An illustration of the solution of the QP problem
using the inverse of'(¢) for D = (1,0.2,0.6,0.8,0.6). The
optimal value is the solution for the equatidi{f) = 2.2
which is0.5.
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Note that if¢ > D, thené > D, for all w > r. Also, the
equalityZ'j,zl[[e < D,.] = r holds for eacl# in the range
D,41 <0 < D,. Thus,forD,;1 <8 <D, (r=0---k),

the functionF'(9) has the form,

k
F()= > D,+16 (35)

u=r—+1

This completes the proof. ]

Corollary 4 There exists a unique 6y < D, such that
Fl)=D-1-1.

Proof: From Eq. (35) we conclude thdt () is strictly
increasing and continuous in the rarfgec D;. Therefore,
F(0) has an inverse in that range, using the theorem that
every strictly increasing and continuous function has an in
verse. Sincd'(f) = k6 for § < Dy, thenF(§) — —oo as

6 — —oo. Hence, the range df for the interval(—oo, D;]

is the interval(—oo, D - 1] which clearly contain® - 1 — 1.

Thusfy &' F~1(D-1-1) € [~0, D;] as needed. Unique-
ness of), follows the fact that the functiof is a one-to-one
mapping ontd —oco, D - 1]. ]

We now can prove the main theorem of this section.

Theorem 5 Let 0y be the unique solution of F(§) = D-1—1.
Then 0% is the optimum value of the optimization problem
stated in Eq. (33).

The theorem tells us that the optimum value of Eq. (33) is
of the form defined by Eq. (34) and that there is exactly one
value of¢ for which the equality constraift(9) = 7 - 1 =
D -1 -1 holds. A plot of F(#) and the solution foé from
Fig. 1 are shown in Fig. 2.
Proof: Corollary 4 implies that a solution exists and is
unique. Note also that from definition éf we have that
the vectorz? is a feasible point of Eq. (33). We now
prove thatz’ is the optimum of Eq. (33) by showing that
|7]|? > ||#%||? for all feasible pointg # 7°.

Assume, by contradiction, that there is a veatasuch

that [|7]]2 < [|%|]2. Lete % » — % # 0, and define



1% {r:v =D,} = {r: 6 > D,}. Since bothw and

7% satisfy the equality constraint of Eq. (33), we have,

p-1=0".-1 = (7-0%).1=0

= E-i:ZeTZO

r=1

(36)

Sincer is a feasible point we havie = 7% + € < D. Also,
by the definition of the sef we have thav? = D, for all
r € I. Combining the two properties we get,

e-<0 forallr el (37)

We start with the simpler case ef = 0 forall » € I. In
this casey differs fromz% only on a subset of the coordi-
nates- ¢ I. However, for these coordinates the components
of 7% are equal td,, thus we obtain a zero variance from
the constant vector whose components arégllherefore,

no other feasible vector can achieve a better variance. For-

mally, sincee,, = 0 for all r € I, then the terms for € I
cancel each other,

k k

S )t = D@

.
17[* = 117" ]1*

r=1 r=1
= S )= w2
r¢l r¢l
From the definition o&?° in Eq. (34) we get that?® = 6,
forallr ¢ I,
17 = [17%]* = > (Bo+e)* = 6

r¢l r¢l

2902671"‘263 .

r¢l r¢l
We use now the assumption that= 0 for all » € I and the
equalityZ'f:1 e = 0 (EQ. (36)) to obtain,

k k k
1P 77 = 260 e + 32 =32 >0
r=1 r=1 r=1

and we get a contradiction singez 0.

We now turn to prove the complementary case in which
Yorer€r < 0. 8incey ] ;e <0, then there exists € T
sucﬁ thak, < 0. We use again Eq. (36) and conclude that
there exists alse ¢ I such thate, > 0. Let us assume
without loss of generality that, + ¢, < 0 (The case,, +
e, > 0 follows analogously by switching the roles @fand
v). Definer’ as follows,

Vy+€ T=u
v, = Vy—€ T =0
Uy otherwise

The vector’ satisfies the constraints of Eq. (33) sinég =
Vy +€ = Dy +e+e€ < Dyandv', = vy — €, =
0o + €, — €, = 6y < D,. Sincer andi' are equal except for
theiru andv components we get,

17']* = ||z (V"0 + (#'0)°] = [(1)? + ()]
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Input:D.

Initialize v = D.

DefineDy11 = —o0.

Sort the components dp, such thatD;, > D;, ... D
Definer = 0; (1) = 1.

While &(r +1) >0

Tht1°

o r+1r+1.

o &(r +1)=&(r) —r(Dy, — Dj,,)- Eq. (39)
Computedy «+ D;, — o), Eq. (40)
Forqg=1,...,r assign;, = .

Returnp.

Figure 3: The algorithm for finding the optimal solution of
the reduced quadratic program (Eq. (33)).

Substituting the values fer' , andv’,, from the definition of
7' we obtain,

17'1” — [17]]*
(v + GU)Q + (Vo — GU)Q] - [(VU)2 + (Vv)Q]
e% + 2v,€6, + e% — 2Uy€y

263 +2(vy — vy)ey

Using the definition of andw? for v, = v% +¢, = D, +
€, and forv, = v% + ¢, = 6y + €, we obtain,

1'% = 1171*

262 +2(Dy + €4 — b — €,)€y
2(Dy + €4y — bo)ey

2eu€y + 2(Dy, — bp)ey

The first term of the bottom equation is negative siace: 0

ande, > 0. Alsou € I, hencedy > D, and the second term
is also negative. We thus get,

1717 = [|7]I*

which is a contradiction.

< 0.

6.2 An efficient algorithm for computing the analytic
solution

The optimization problem of Eq. (33) can be solved using
standard QP methods, and interior point methods in particu-
lar [11]. For these methods the computation time®i%?).
In this section we give an algorithm for solving that opti-
mization problem inO(klog k) time, by solving the equa-
tonF@) =D -1-1.

As before, we assume that the components of the vector
v are given in a descending ordéd; > D, > ... Dy and
we denoteD;; = —oo. The algorithm searches for the
interval [D,.11, D,.) which containg,. We now use simple
algebraic manipulations to derive the search scheméfor
SinceF' (Dy) = F(y) + 1, thenby € [D,41, D,.), iff

1> F(D,)—F(D,) and F(Dy) — F(D,41) > 1.
For convenience, we define the potential function
b(r) = 1 [F(D1) — F(D,)] (38)

and obtain,

0o € [Dy+1,D,) & @(r)>0and®(r+1) <0



InpUI: {(B(wl)ayl)a-_--v(ﬁ(_mm)vym)}' )
Choose{7;} - a feasible point for Eq. (24).
Iterate.

e Choose an exampje 3

e Computed, andB, Egs. (29) and (30) H
o Dy 3 +1,, Eq. (33)
e Computef = F~(D,,-1-1) Fig. 3 i
o Ty Th— 32 Eq. (33)

Output the final hypothesis: Eq. (25) /

; ; ; ; ;
0 50 100 150 200 250 300
No. of training examples

H(z) = arg ax {; Tir K (h(m)’ h(%))} Figure 5: Run time comparison of two algorithms for code
design using quadratic programming: Matlab’s standard QP
package and the proposed algorithm (denoted SPOC). Note
that we used a logarithmic scale for the run-timggxis.
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Figure 4: A skeleton of the algorithm for finding a classifier
based on an output code by solving the quadratic program
defined in Eq. (24).

are ofk = 4 rows (classes) and= 2 columns. We varied
the size of the training set size from = 10 to m = 250.
The examples were generated using the uniform distribution
{1-[F(D1) — F(D,)]} over[—1,1] x [-1,1]. The domain[—1,1] x [-1,1] was
{1 - [F(Dy) — F(D,41)]} partitioned into four quarters of equal sife:1,0] x [—1, 0],
— F(D,) - F(Dys1) [—1,0]x][0, 1], [0, 1] x[—1, 0], and[0, 1] x [0, 1]. Each quarter
- " r+1/ - was associated with a different label. For each sample size

Also note that,
O(r) —®(r+1)

Recall that the functiod'(6) is linear in each interval we tested, we ran the algorithm three times, each run used a
[D,41, D,) with a sloper (Lemma 3), hence, different randomly generated training set. We compared the
standard quadratic optimization routine available from-Ma
F(D;) = F(Dyq1) = 7(Dr — Dyy1) lab with our algorithm which was also implemented in Mat-

= ®(r+1)=0(r)—r(Dr—Dry1). (39) lab. The average running time results are shown in Fig. 5.

. I i ) Note that we used a log-scale for thérun-time) axis. The
To solve the equatio#'(#) = D -1 — 1, we first findr L ;
such thatb(r) > 0 and®(r + 1) < 0, which implies that results show that the efficient algorithm can be two orders of

B € [Dos1, Dv). Using Eq. (38) and the equation(D; ) — magnitude faster than the standard QP package.
F(6y) + 1 we get,

F(D,) = F(6y) = (r) .

7 Conclusions and future research

In this paper we investigated the problemdefigning out-

Using the linearity oft"(¢) we obtain, put codes for solving multiclass problems. We first discdsse
_ _ discrete codes and showed that while the problem is intobecta
F(D,)—F =r(D,— D,— =¢ . > . i
(Dr)=F(60) = bo) = 7l o) (r) in general we can find the first column of a code matrix in
therefore polynomial time. The question whether the algorithm can be
6o = D, — ®(r) _ (40) generalized td > 2 columns with running time of)(2!)

or less remains open. Another closely related question is
The complete algorithm is described in Fig. 3. Since it whether we can find efficiently the next column given previ-
takesO(k log k) time to sort the vectaD and anothe© (k) ous columns. Also left open for future research is further us
time for the loop search, the total run time($k log k). age of the algorithm for finding the first column as a subrou-
We are finally ready to give the algorithm for solving tine in constructing codes based on trees or directed acycli
learning problem described by Eq. (24). Since the output graphs [18], and as a tool for incremental (column by col-
code is constructed of the supporting patterns we term ourumn) construction of output codes.
algorithm SPOC for Support Pattern Output Coding. The Motivated by the intractability results for discrete codes
SPOC algorithm is described in Fig. 4. We have also devel- we introduced the notion of continuous output codes. We
oped methods for choosing an exampl® modify on each described three optimization problems for finding good con-
round and a stopping criterion for the entire optimizatibn a tinuous codes for a given a set of binary classifiers. We have
gorithm. Due to lack of space we omit the details which will discussed in detail an efficient algorithm for one of the ¢hre
appear in a full paper. problems which is based on quadratic programming. As a
We have performed preliminary experiments with syn- special case, our framework also provides a new efficient al-
thetic data in order to check the actual performance of our gorithm for multiclass Support Vector Machines. The im-
algorithm. We tested the special case corresponding to mul-portance of this efficient algorithm might prove to be criicia
ticlass SVM by settindi(z) = . The code matrices we test in large classification problems with many classes such as
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Kanji character recognition. We also devised efficient im- sequential minimal optimization. In B. Scholkopf, C. Basy

plementation of the algorithm. The implementation details and A. Smola, editorsidvances in Kernel Methods - Support
of the algorithm, its convergence, generalization propsrt Vector Learning. MIT Press, 1998.

and more experimental results were omitted due to the lack[18] J-C. Platt, N. Cristianini, and J. Shawe-Taylor. Larger-
of space and will be presented elsewhere. Finally, an impor- gin dags for multiclass classification. Mlvances in Neural

Information Processing Systems 12. MIT Press, 2000. (To

tant question which we have tackled barely in this paper is appear.).

the problem of interleaving the code design problem with the [19]

learning of binary classifiers. A viable direction in this-do
main is combining our algorithm for continuous codes with [20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
the support vector machine algorithm.
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