Improved Algorithms for Theory Revision with Queries

Robert H. Sloan'
Dept. of EE & Comp. Sci.
U. lllinois at Chicago
851 S. Morgan St. Rm 1120

Judy Goldsmith*
Dept. of Computer Science
University of Kentucky
763 Anderson Hall
Lexington, KY 40506

goldsmit@cs.uky.edu sloan@eecs.uic.edu

Abstract

We give a revision algorithm for monotone DNF
formulas in the general revision model (additions
and deletions of variables) that uge&n>elogn)
queries, wheren is the number of terms; the
revision distance to the target formula, amdhe
number of variables. We also give an algorithm for
revising 2-term unate DNF formulas in the same
model, with a similar query bound. Lastly, we
show that the earlier query bound on revising read-
once formulas in the deletions-only model can be
improved fromO(elog® n) to O(elogn).

1 INTRODUCTION

A doctor has a theory about the patient and makes recom-

mendations. They don’t work. The doctor must change the

theory. Rather than start from scratch again, she runs diag-

nostics designed to lead to incremental changes in theytheor
If she was nearly correct, this should be more efficient than
beginning all over again.

The goal of concept learning, and indeed of all learning

from examples, is to obtain a representation of a concept or
function on some domain so that one can use it to predict the©Nce

function’s value on new instances from the domain. How-
ever, in using this function on some performance task, one
may well learn that it is not exactly correct (e.g., in med-
ical diagnosis if the patient does not recover). Hence one
wants torevise this function. Intuitively, if one already has
a roughly correct function, then altering it to be exactly-co
rect should require much less training data than learniag th
function from scratch. This paper and previous work [6, 14]
show that this is indeed the case.

Note that what the computational learning theory com-
munity calls aconcept is often referred to asraeory in logic,
and either a theory or a knowledge base elsewhere in artifi-
cial intelligence. We will henceforth refer to the problem

*Partially supported by NSF grant CCR-9610348; work done
while visiting the Dept. of EECS at the University of llliroat
Chicago and the Dept. of Computer Science at Boston Untyersi

tPartially supported by NSF grant CCR-9800070.

tPartially supported by NSF grant CCR-9800070, and OTKA
T-25721.

236

Gyorgy Turan?
Math, Stat., & CS Dept.
U. lllinois at Chicago,
Research Group on Al

Balazs Szorényi
Dept. of Computer Science
University of Szeged
Hungary

Chicago, IL 60607-7053 sirnew@edge.stud.u-szeged.hdungarian Acad. of Sciences

gyt@uic.edu

of revising a concept by its most common name in machine
learning:theory revision.

We frame this problem in the model of learning with
membership and equivalence queries. We believe that the
query model with both equivalence and membership queries
is especially well suited to the theory revision problem for
two reasons. First, in practice theory revision would beduse
for deployed Al systems that make mistakes, and typically
a human expert would be the one to say that a system had
made a mistake. So there is a human expert who is provid-
ing something like counterexamples to equivalence queries
and this human expert should be able to answer membership
queries as well. Second, as we will discuss in more detail,
there is evidence that it will be very difficult or impossible
to make progress on theory revision using only equivalence
queries (or only PAC-type sampling).

In this paper, we present three new results. We show how
to revisem-term monotone DNF, and 2-term unate DNF, in
time O(logn - poly(m) - poly(e)), wheree is the minimum
number of revisions needed, andis the total number of
variables, allowing essentially arbitrary revisions te thi-
tial theory; as long as» = o(n), this is faster than relearn-
ing the theory from scratch. Each of these results improves
over a previous result for 2-term monotone DNF [6]. Addi-
tionally, we reduce the query complexity for revising read-
formulas fron© (elog” n) to O(elogn). This is very
close to optimal; the lower bound on the number of queries
is Q(elog(n/e)) [15].

We next explain a bit more about the model of theory re-
vision used here, put our results into context, and then com-
pare the results in this paper with previous results.

1.1 MODEL OF THEORY REVISION

The key metric for theory revision is thentactic distance
between the initial theory and the target theory. The syn-
tactic distance between a given concept representation and
another concept is the minimal number of elementary op-
erations (such as the addition or the deletion of a literal or
a clause) needed to transform the given concept representa-
tion to a representation of the other concept. Our goal in
theory revision is to find algorithms whose query complex-
ity is polynomial in the syntactic difference (etvision dis-
tance) between the initial theory and the target theory, but
only polylogarithmic in the total number of possible vari-
ables. Thus, this work has some similarities to the work on

attribute-efficient learning [3, 4].

A particular measure of revision distance is determined
by fixing a specific set of elementary operations, which we
will call revision operators. Following the spirit of much
work in machine learning on theory revision, we consider
two sets of revision operators, the deletions-only revisip-
erator and the general revision operator. These are defined i
Section 2.

1.2 RELATED WORK

Mooney [10] formulated an approach to theory revision
based onynractic distances, and was the first to look at the-
ory revision in the context of computational learning theor
He considered PAC-learnability and gave a positive result f
sample complexity (which is equivalent to a positive result on
guery complexity). Computational efficiency was left as an
open problem.

Sloan and Turan [14] specified the precise model of the-
ory revision that we use here. In the deletions-only model,
they gave revision algorithms for 2-term unate DNF using
O(e) queries, unaté-DNF usingO(kelogn) queries, and
read-once formulas usir@(e log”) queries, where is the
revision distance between the initial and the target tkesori
andn is the number of variables. In the general model, they
gave revision algorithms for threshold and parity funcsion
Goldsmith and Sloan [6] gave algorithms for 2-term mono-
tone DNF in the general model and for propositional Horn
sentences in the deletions-only model.

More generally, there is a wide Al literature on theory
revision (e.g., [8,12,16]). Many systems for theory remisi
such as ErHER [11], have been implemented.

The problem of correcting errors is pervasive, and error-

In the deletions-only model, given a positive counterex-
ample to one’s current hypothesis (or to the initial thepry)
it is relatively straightforward to use membership quetges
decide which term to revise (i.e., to solve thedir assign-
ment problem.) Consider revising a 2-term unate DNF in the
deletions-only model. If, say, instaneeis positive for the
target but satisfies neither term nor ¢, of the current hy-
pothesig; V t2, then one or both of; or ¢, has at least one
extra variable to be deleted. Since neitheneeds to have
any literals added to it, then the following will tell us whic
one to revise: First, ask a membership query ahodified
by turning “off” any literals not ir¢; . If the response is yes,
thenz must satisfy a term of the target that is syntactically
a subset ot;, and we can delete fromy any variables not
“on” in z. Next, ask a membership query ofmodified by
turning “off” any literals not int,. Again, if the response is
yes, then we can delete froty any variables not “on” in.
This was one of the key ideas used by our earlier algorithm
for revising 2-term unate DNF [14].

The situation becomes more complicated when revisions
can include the addition of variables. In particular, in the
unate case, we do not knawpriori how to turn off variables
in an instance if those variables do not occur in any term of
the initial theory. The problem is that if a literal invohgn:;
needs to be added, amgdid not occur in the original theory,
we do not know whethet; or z; occurs in the target.

However, even for monotone DNF, there are additional
complications in the general model. By taking a positive
counterexample and turning off all the variables that arte no
in a given hypothesis term, we can tell whether to make dele-
tions from that hypothesis term. However, if we know that
additions are needed, it is difficult to tell which initialeth

them are fault analysis of circuits in switching theory (see for revising 2-term monotone DNF, we solved this problem
e.g., Kohavi [7]), program debugging (e.g., [13]), and rede by trying in parallel (or, equivalently, nondeterminisiily)
based diagnosis (see, e.g., [5,9]). See Sloan and Turjn [1410 reviseborh terms from a given counterexample. Such a
for a somewhat longer discussion of these connections. Strategy is inherently exponential in the number of terms.

Sloan and Turan [14] present a family of DNF formu- Thus, new ideas were needed in the general model of
lae onn variables withO(n) terms for which any revision revisions to extend the algorithm for 2-term monotone DNF
algorithm require$)(n) queries. Thus, the problem of the- both to monotone DNF, and to 2-term unate DNF.
ory revision as we have posed it is interesting only for DNF Notice that while the result on revising monotone DNF
formulas with substantially fewer terms than possible-vari holds for any number of terms, it is most interesting for a
ables (and only for Horn sentences with substantially fewer number of terms that is(n), wheren is the number of vari-
clauses than possible variables). Note that in the generalables. Once the number of terms(i$n), then one cannot
model, this does not mean that the initial theory must con- do substantially better than to throw away the initial the-
tain many fewer terms or clauses than variables, but that theory and use Angluin’s algorithm to learn the formula from
universe ofpossible variables considered in revising the ini- scratch [1]. This is because Sloan and Turan [14] have exhib
tial theory must be much larger than the number of terms or ited a©(n)-term monotone DNF that requir€§n) queries
clauses, in order for revision to be more efficient than from- to revise a single error, and Angluin’s algorithm requires
scratch learning. only O(mn) queries to learn am-term monotone DNF.

Lastly, for read-once formulas in the deletions-only mod-

1.3 DISCUSSION OF OUR RESULTS el, we lower the query complexity frond(elog®n) to
In the deletions-only model, revising unate formulas is al- O(elogn), wheree is the revision distance between the ini-
most identical to revising monotone formulas, since the ori tial read-once formula and the target ani the number of
entation of every variable that can appear in the target is variables. We conjecture that for the type of formulas we
known from the start. This igor the case in the general consider (monotone, unate, and “near-unate,” such as Horn)
model. That is why the first result on DNF formulas was for if there is a revision algorithm at all, then there is a revi-
2-termunate DNF in the deletions-only model [14], but it sion algorithm whose query complexity’s dependence on the
was then extended to 2-termmvnotone DNF in the general ~ number of variables is only multiplicative inO(log n), not
model [6]. polylogn. (Note, however, that there mayso be a depen-

237

dence on the number of terms or clauses in the formula beingto obtain a formula foC'. In the deletions-only model, our

revised.) specified set of revision operators is fixing an occurrenee of
variable to the constant 0 or 1. This corresponds to allowing
2 NOTATION deletions of variables and terms in DNF theory revision.

)) In the general revision operator, we are also allowed to
We are using the standard model of membership and proper,qq variables to a DNF term, with the following limitations
equivalence queries (with counterexamples), denoted by MQjn, the unate case. First, a literal that appears in the ifitia
and EQ [2]. In an equivalence query, the learning algorithm 1,15 cannot appear negated in the target formula. Second,
proposes aypothesis, a concept, from the concept class, the target formula must also be unate: in other words, vari-
and the answer depends on whether= C', whereC'is aples not used at all in the initial formula cannot be added
the target concept. If so, the answer is “correct”, and the jyi one term negated and into another term unnegated. Fur-
learning algorithm has succeeded in its goal of exact iden- hermore, in our construction, all intermediate hypotiese
tification of the target concept. Otherwise, the answer is a st also be unate.
counterexample: any instance: such thaC(z) # h(z). Ina Note that this model allows us to entirely replace one
membership query, the learning algorithm gives an instanceerm of the initial theory by a new term with entirely distinc
x, and the answer is either 1 or 0, dependingt(w); that variables. The revision distance for this replacementés th
is, MQ(z) = C(x), where agairl is the target concept. We g of the length of the deleted term (all of whose variables
assume throughout that the concepts TRUE and FALSE arey st pe fixed to true) and the length of the added term. On
allowed as equivalence queries. the other hand, the revision distance for simply deleting a

We use standard notions from propositional logic, such erm with no replacement is only 1, since this can be done
as variable, term, disjunctive normal form (DNF), monotone merely by fixing any one variable of the term to be false.
etc. A formula isread-once if no variable occurs in it more

than once; a formula ignate if no variable ever occurs in it 3 REVISING MONOTONE DNF
both negated and unnegated.
The symbolcC will always denoterrict subset. In this section, we present an algorithm to revise a mon-
We will need to combine terms of the initial theory and otonem-term DNF formula in the general revision model.
various hypotheses of our revision algorithms with insenc This extends the algorithm for revising 2-term DNF formu-
in various ways. We define the operatibn z for a termt¢ las in [6].
and an instance to be arerm that is theand of those literals
in t that are satisfied bgy 3.1 DESCRIPTION OF ALGORITHM
On the other hand, we will need intersection-like opera- A monotone DNF formula can be viewed as a collection of
tions that returrinstances. The meaning of the instaneen ¢ subsets of the set of variables, with each term defining a sub-
in the monotone case is to seiff thatis, O, all bits of; that set. We say that one termavers another if it is a superset of
do not occur in the monotone term In the unate case, we the other. When convenient, we sometimes treat monotone
no longer know which orientation of a variable not occurring terms as elements ¢, 1}", where the bit vector has a 1 ex-
in aterm is off. actly in those positions where the term contains a varidble.
Thus we define two different operationsit andznt for a term¢ covers a term of the target formula, then MQ= 1
“intersecting” instance: € {0,1}" with termt to getbacka and any counterexampleto EQ(¢) must satisfy the target
new instance. These intersections are always with respect t and nott; namely,z must be positive.
an initial theoryp. If Y C Zand MQY) = 0 and MQZ) = 1, thenZ
“Intersect down” is defined by covers a target term not covered by We can use binary
search to find a subset @fcontainingY” that covers a target
term. In fact, we can find a set of variables and a variable
leZ\ (YUA)suchthat MQY U A) = 0 but MQ(Y U
Au{l}) =1
We previously [6] used a sort of binary search for this
purpose. In the present setting, however, one new complica-

x[q] if one ofv;,v; € t

e\ t)i] ifviorg; €\t
[¢] otherwise,

(z0t)[i] =

(
T
and “intersect up” is defined by

x[i] if one ofv;,v; € ¢ tion arises. We would like to considéa necessary addition
(xNt)[i] = e\ t)[i] ifv;orT; e p\t to Y. However, ifZ covers several target terms, it may be
z[i] otherwise. necessary to addto Y to cover one of those terms but not

another. This could lead to our building tipto cover more
than one target termin an inefficient manner. We call such an
denote the set of indices or variables on whicandy dis- l apivot, because the choice of which term to cover pivots on
agree; thugr ® y| is the number of variables on whiehand whetherl is added td”. We recognize a pivot because with-

y disagree. We overload this operator to also indicate the outit, Z still covers a target term, so M@ \ {i}) = 1. Ifa
symmetric difference of two terms, namely the set of literal pivot is found in the course of the binary search, we throw it

For two vectorsr,y € {0,1}", we will usez ® y to

that appears in exactly one of the two terms.
If o =T, V Ts, thenT; denotes the term other thai.

Therevision distance between a formula and some tar-
get concepf is defined to be the minimum number of appli-
cations of a specified set of revision operationgtneeded

out and restart the search frdmto Z \ {}.
With that in mind, we can now describe the algorithm.
The heart of the construction is the procedurV/RSE-
UPTOE. It takes as parameters airterm monotone DNF
formulag ande, the assumed revision distance frgrto the

Algorithm 1 REVISEUPTOE(y, €). Revisesp, a set of mon-
otone terms, if possible using at mestevisions; otherwise
returns “Failure.” Note that if any subroutine either finte t
correct hypothesis or returns “Failure”, then this aldorit
also terminates. Also, if the error limitis ever exceeded,
this algorithm terminates immediately and returns “Faitur

L h=90 /lthe initial hypothesis
2: while EQ(h) gives a counterexampieande > 0 do
3: ifMQ(zxNt)=1forsomet € h then /ldelete
variables from hypothesis terms
4: for all ¢ € h for which MQ(z Nt) = 1 do
5: t=tNux
6: e=e—|t—(tNaz)]
7: end for
8: else /ffind a new term to add to the hypothesis
9: terms = @ /lthe set of terms to consider
10: min =e
11 FoundATerm = false
12: for all ¢ € terms do
13: new=tNx
14: numAddedLits = 0
15: while MQ(new) == 0 and numAddedLits <
e do
16: d = BINARY SEARCH(new, x)
17: new = new U {d}
18: numAddedLits = numAddedLits + 1
19: if MQ(z — {d}) == 1 then
20: Iz — {d} is a positive counterexample that
covers fewer goal terms
2L x=z—{d}
22: restart for all ¢ loop with thisz by backing
up to line 9 to reset other parameters
23: end if
24: end while
25: if MQ(new) == 1 then
26: T = new
27: FoundATerm = true
28: min = min(numAddedLits, min)
29: end if
30: end for
31: if not FoundATerm then
32: return Failure
33: else
34: h=huU{z}
35: e =e—min //minimum number of edits done
on anyt € ¢ which contributed ta:
36: end if
37 endif

38: end while

239

target. Ife is in fact too small, RVISEUPTOE(p,) fails,
ande is doubled. The claim, discussed in the next subsec-
tion, is that whenever the revision distancedis, REVISE-
UPTOE(¢y, e) succeeds, and uses only a bounded number of
each type of query.

Given p, REVISEUPTOE(yp, €) constructs a hypothesis
monotone DNF formula& so that, at each stage of the con-
struction, each term df covers a term of the target formula.
At each stage of the construction, we get a positive coun-
terexampleg to h. (The initial & is @), which is interpreted
as the everywhere-false formula.)

If « covers a target term already covered by a terrh,of
thenz is used to delete variables from any hypothesis terms
that cover a term covered hy Sincex is a positive coun-
terexample, for any € h, it must be that: N¢ C ¢, so this
yields at least one deletion.

Otherwisey is used to add a new term to the hypothesis.
For each initial terms, if binary search finds an unambiguous
extension of N z in z that covers a target term (has positive
membership query) with no more tharadditions, then we
consider that a candidate new term. It is then treated as the
positive counterexample for each subsequent initial ténm.
this way, if several initial target terms could be reviseddyy
we get a new term that is a “close” revision (no more than
additions) of each of them. In particular, if the revisios-di
tance is< e and the most efficient revision to that target term
ist;, then the new term is a revisionfwith no unnecessary
additions or deletions.

3.2 MONOTONE DNF CORRECTNESS AND
QUERY COMPLEXITY

For all of the lemmas below, we assume thas anm-term
monotone DNF formula, and the target is % monotone
DNF formula ¢n' < m) with revision distance at most
from .

Lemma 1 Algorithm REVISEUPTOE (Algorithm 1) main-
tains the invariant that each term of its hypothesis covers
some term of the target. Therefore, any counterexamples
must be positive counterexamples.

Proof sketch. The initial counterexample is positive. Each
positive counterexample;, covers at least one target term
7. If T* is already covered by a tertre h, then the “If” in
Line 3 of REVISEUPTOE must be true, antlis replaced by

t N x, which still coversI'™*. (Note thatz cannot cover any
t € h, since itis a counterexample to This forces at least
one deletion if M@tNz) = 1.) If z does not cover any term
covered byh, then, unless RVISEUPTOE returns Failure,
Lines 9-37 add a new term tothat covers some target term
covered by the counterexample O

Lemma 2 Each counterexample that covers a target term
also covered by at least one term in h is used to delete vari-
ables from any terms t € h such that t N z still covers a
term. Because each term in h must be queried, each deletion
requires O(m) queries.

Lemma 3 [f x is used to add a new term to h, the new term
does not cover any target term already covered by h. Thus,
no two terms in h cover the same target term.

Proof sketch. Supposé’ is added toh because of coun-
terexampler. In order for the algorithm to reach Line 8, it
must be the case that for ahglready inh, MQ(z Nt) = 0.
Note thatt’ C «, by construction. Thereforent’ C t N,
so (by monotonicity) M@t N t') = 0. U

Thus, there are at most terms inh at any time.

Note that each adds at most one term tg once a set of
additions is found for somee ¢, that new positive example
replacese, and the process is repeated for eacemaining

Proof sketch. Note that it is possible to get an initial theory
that is, in fact, correct. Because of this possibility, wegibe
by asking MQy). If the answer is not “Correct!” we ap-
ply REVISEUPTOE(¢p, e) for repeatedly doubled values of
until it produces a “Correct!”

We give the full analysis of RvISEUPTOE; the rest fol-
lows. Note that the addition of a term to the hypothesis may
involve simply copying that term from the initial theory, or
may also involve deleting some variables not in the coun-

in . Thus, the term produced is as near as possible to oneterexample that triggers the addition, or perhaps some addi

of the original terms.

Lemma 4 If counterexample x covers more than one target
term, say Ty and Ty (and perhaps others), and is used to
add a new term to h, then both T and Ty will be covered in
the most efficient manner from terms in .

Proof. Note that no term i covers eithetl;", sincex
was not used for deletions.

Suppose that, for boththere are variableg € T;\ (zN
t). Then, the binary search frofe N t) to z will eventually
find one of thev;s. (We call these variables “pivots.”) At
that point, the code backs up to Line 9 withreplaced by
the less ambiguous — v;. Once the last pivot is found, any
additions to any{z N t) must be variables that appear in the
unigue target term still covered, or in the intersectionlbf a
remaining covered target terms.

Suppose, however, that we add a termw, to h that
covers botHl}" and7’y. We know that for any term € o,
if ¢t N« was edited torew, then this involved at most ad-
ditions, and all those additions were T N T, since no
pivots were found. Therefore, tfis the appropriate term to
revise tol;" ande is the correct errorew is a necessary
revision oft. Furthermore, ift’ is the appropriate term to
revise toZ;, new is also a necessary revisionf Eventu-
ally, new will have oneT* deleted, and the appropriater
t" will contribute another term th—one that does not cover
Tx. U

Lemma 5 A single addition of a term to the hypothesis re-
quires O(m?elogn) membership queries.

Proof sketch. ~ Note that there can be at mastdditions
to anyz Nt for anyt € ¢; if more additions are needed,
the attempt to edit that term fails. Each search for an addi-
tion requiredog n membership queries. However, even if the
counterexample covers a unique target term, the algorithm
may try each of then terms ofy to find one that works. This
meansD(me log n) membership queries.

If 2 is ambiguous, then every time a pivot is found, the
entire additions procedure is restarted. Simcean cover
at mostm target terms, this can happem — 1 times, so

tions of variables ix that were not in the initial theory term.
The construction of the revised theory requing'sadditions
of terms to the hypothesis plus upd@additions of variables
to initial terms.

Each addition of a term to the hypothesis requires
O(m?*elogn) queries, and there are’ = O(m) terms, so
this requiresO (m?*e logn) membership queries needed for
additions.

There are0(e) deletions needed, and each deletion re-
quires O(m) membership queries, for a total 6i(em),
which isO(m?elogn) queries.

Finally, each addition of a term to the hypothesis and
each revision may require an equivalence query, for a total
of O(e + m) queries.

4 REVISING UNATE DNF

In this section, we present an algorithm that can revise a 2-
term unate DNF in the general model of revisions. The only
restriction we make is that we assume that no variable in the
initial theory has the wrong orientation. That isgif occurs

in the initial theory, themn:; could be deleted, or moved to the
other term if it occurs only in one term, but we cannot delete
z; and addz;.

4.1 DESCRIPTION OF ALGORITHM

Throughout this section, we will refer to a tertrof a hy-
pothesis DNF agull with respect to target term T* if t's
variables are a superset0f’s variables. Generally it will
be clear which target term we are referring to, so we will sim-
ply refer tot asfull. Intuitively, if ¢ is full, then any necessary
additions have been found, ahcequires only deletion edits.

We refer to the variables that do not occur in the initial
theory as theutside variables, and those that do occur in the
initial theory as thenside variables.

We begin by explaining how we must alter two subrou-
tines, BNARY SEARCH used earlier in this paper, anceR
VISEDOWN, used in our earlier work, in order to make them
work in the unate case.

4.1.1 Binary search

the entire search for one unambiguous addition may requireThe BINARY SEARCH referred to in this section is different
O

O(m?elogn) membership queries.

Theorem 6 REVISEUPTOE(p,€) uses at most
O(m3elogn) membership queries and O(e + m) equiva-
lence queries, and succeeds if ¢ has revision distance less
than or equal to e. Therefore, an m-term monotone DNF
formula with an edit distance e from the target formula can
be revised using O(m>elogn) queries.

240

from that used previously, in that it does not deal with sets
of variables, but withvettings of variables. When we look at
T\ S, we are really considering the variables corresponding
to elements off' ® S. When we divideT' ® S into two
roughly-equal size sets, what we do is “flip the bits” (change
the signs) of the variables in one of those sets. Other than
this minor definitional change, and a small change involving
pivots, which we discuss next,IBARY SEARCH works the

same. The code for binary search for the unate DNF case isviISEDOWN, at least one of the two terms is full.
broken out in the figure entitled Algorithm 2.

Algorithm 2 BINARY SEARCH(Y,, Z,). For unate revisions,
finds necessary additionsYofrom Z to cover a target term,
if this can be done with< e additions. We require that ini-
tially MQ(Z) = 1.

So ReviSEDOWN may have a two-term hypothesis for a
two-term target unate DNF, but still receive a negative eoun
terexample: to an equivalence query, because the hypothesis
term thatz satisfies is not full. Notice, however, that there
is no ambiguity about which hypothesis term to revise when
REVISEDOWN gets a negative counterexample, because the
negative counterexample can satisfy only the one term of the
hypothesis that is not full. We will discuss what should be
done with this negative counterexample in Section 4.1.3.

Algorithm 3 REVISEDOWN(T7,T5, €, p1, p2)

Edits the two-term hypothesi Vv T5, but never makes more
thane edits. Thep; are positive instances (or NULL) asso-
ciated with the respectivE;. Terminates either in failure, or

with correct target formula. Terminates in failure if call t

BINARY SEARCH fails.

1: while MQ(Y") == 0 ande > 0 do
2 S=Y,T=12Z.
3: while [T'® S| > 1do //binary search for 1 addition
4: Divide positions wheres andT' disagree into ap-
proximately equal-size sets andd..
5: PutMid = S with positions ind; replaced byl"'s
values
6: if MQ(Mid) == 0 then
7: S = Mid
8: else
9: T =M:id
10: end if
11: end while 3
12: Let! be the 1 position i" ® S 4:
13: if MQ(Z with positionl flipped) = 1 then S
14: throw PivotExceptiofV,, e, Z) 6:
15: endif 7
16: Y =Y U the value ofZ for position! 8:
17 e=e—1 9:
18: end while 10:
19: if MQ(Y') == 1 then /IY covers term 11:
20: returnY,e 12:
21: else lle <0, so all edits already used 13t
22: return “Failure” 14:
23: end if 15
16:
We found the overall algorithm for the unate case easiest g:
to describe by thinking of BIARY SEARCH stopping execu- 19:
tion and throwing an exception back to the main algorithm 20j
whenever it finds a pivot. The action of the main algorithm 1:
is much the same as for the monotone case—it backs up ancgzj
restarts with a counterexample that is altered by turnieg th 23j

pivot variable to the off position.

The procedure RvISEDOWN was used introduced in our
earlier work [14], where we called it BFINEDOWN. It is
used to delete unnecessary variables from hypothesis.terms
Given a hypothesis where each term covers a target term,
we will get only positive counterexamples. Suppose we are

given a hypothesi#}; v T}, such thafl’; andTj, cover distinct :
target terms, and positive counterexamplenvhich neces- sL:
sarily covers neithefl; nor T,. Then for onel’., N T,)
covers a target term and can therefore replgcg(If « cov- gg

ers both target terms, it is used to delete variables fror bot
hypothesis terms.) This process is repeated unti{/BG=

24
4.1.2 Revise Down 25:
26:

27:

30:

1: Puth =17 vV T5.
2: while (z = EQ(h)) # “Correct” do

if e < 0 then
return Failure
end if
if h(x) = 0 then
for all termsT; do
2 = 2NT;
Turn “off” in &' any outside variables if¥; \ T;
if MQ(z') == 1 then
T;=T;Nx
Decrement by # deletions td;
end if
end for
if no term ofh was revised by: then
return “Failure”
end if
else /lz is a negative counterexample
if Tl (J?) == TQ(.’L') == 1 then
return Failure
else
Let T; be unique term ok such thafl;(z) = 1
if p; == NULL then
return Failure
end if
z = vector with inside variables af and outside
variables ofp;.
if MQ(z) # 1 then
return Failure
end if
Perform binary search fromto z
Add all variables found td; and decremend
accordingly
end if
end if

//Used up all allowable edits

Iz is positive counterexample

34: end while

“Correct” or the number of deletions performed exceeds the
error bound, or EQh) returns a negative counterexample.

The preceding discussion actually applies only to certain

For unate formulas with general revisions, however, the calls of REviSEDOWN. As we will discuss soon in Sec-

situation is not so straightforward. Either or both initial tion 4.1.4, the main algorithm tries callingeRISEDOWN

theory terms might require additions as well as deletions. with several different parameters, intending to abandbn al
However, the main algorithm that callERISEDOWN is de- but one of the calls. For the calls that will be abandoned (in-
signed so that for any two-term hypothesis passed#e R tuitively, the ones where the algorithm has made the wrong

241

“guesses” about the parameters), the two-term hypothesis
given to REVISEDOWN could have neither term full. In this
case, however, it is fine for ®/ISEDOWN to fail. In fact,
when REVISEDOWN receives a hegative counterexample, it
checks, in Line 19, to see whether that negative counterex-
ample satisfies both hypothesis terms. If so, then it must be
that neither hypothesis term is full, sERISEDOWN termi-
nates with failure.

4.1.3 Negative counterexamples

Algorithm 4 REVISEUPTOE(pg (= 1 V t2),€)
Note that a branch of a “try both” fails if one of the subrou-

We will sometimes have hypothesis terms that are not full. tines it calls failswithout being explicitly tested for failure.

This situation can arise both with a one-term hypothesis
in REVISEUPTOE, and as just discussed, for one of the
two terms of REVISEDOWN's two-term hypothesis. In both
cases, the algorithm is designed so that the hypothesis term
always contains all the inside variables of the associated t
get term.

We keep associated with each hypothesis t&fra pos-
itive instancep; that is supposed to satisfy the target term
associated witll’;*. The special case ¢f; being NULL in-
dicates thaf; is supposed to be full, and any negative coun-
terexample tdl’; must indicate that an incorrect nondeter-
ministic choice has been made.

When we receive a negative counterexamptbat sat-
isfies hypothesis ter;, it must be thay has one or more

o

outside variables of the associated target term set toiofles 1.

T; has all its inside variables. Meanwhile, by definition,

has all those outside variables set to on. So, if we do a binary14:
search fromy to a vector with the same inside variablegjas 15;

and the same outside variablespaswe will discover some
number of necessary additionsTy, at a cost ofO(logn)

gueries per addition for BIARY SEARCH. (We could equally 17:
well search from a vector with the same inside variables as 18:

p; and the same outside variablegas y.) 19:
4.1.4 Main Algorithm: REVISEUPTOE 20:
As before, we test whether the initial formula= ¢, Vt, can ;;
be revised to the target formula, fo= 1,2, 4, The pro- :
cedure, RVISEUPTOE, begins with an equivalence query
to (). If that is not the target formula, then we get a posi- o4
tive counterexampleg, which is used to create a one-term 25j
hypothesis. 26j
Assume for now that both MQN(¢; N¢2)) = 0 and o7
MQ(zN(t; Ntz)) = 0. We will describe how to handle the o8

case where that is not true a bit later.
Intuitively, we nondeterministically try both the assump-

tions thatr satisfies a target term that should be derived by 31j

editing initial theory term¢; (i.e., the revision distance is
minimized by editing; rather thart, to get this target term)

and thatr satisfies a target term that should be derived by 34j
editing initial theory ternt,. In practice, the “try both” con- 351
struct tries first one and then the other alternative. 36:

Here is how we proceed when we are assuming that

RPN OA

33:

1: Letx be positive instance (from E@ALSE))
2: trybothd =1,2:
3: Work with z as described in text to create a one-term

hypothesish assuming that: satisfies target term that
can be derived fron, to minimize total edits
Let¢; be term ofp, thath is derived from
Let p; be positive instance associated with
while (y = EQ(h)) # “Correct’and e > 0 do
if h(y) =1 then //Negative counterexample
if p; == NULL then
return “Failure”
else /lh needs more variables
z = vector with inside variables aof and outside
variables ofp;.
if MQ(z) # 1 then
return Failure
end if
Perform binary search fromto z
Add all variables found tdh; decrement ac-

cordingly
end if
else Iy is a positive counter example
ho=h;eg=¢
y' = yOty
if Ny C h and then M Q(y') == 1 then
h=hnNny'

else if BINARYSEARCH(y',y,e) returns (z,e)
(rather than “Failure”then
h = ho V ((t; Ny) plus literals ofz in z ® y')
//REVISEDOWN may find target
if REVISEDOWN(h, e) returns “Failure’then
h=hgN Yy
€ =e€ey — |h0 \ h|
end if
else //BINARY SEARCH(y',y, €) returns “Failure”
h=hoN Yy
€ =€y — |h0 \h|
end if
end if
end while
end try both

should be edited to create a hypothesis t@fnsuch that
T(xz) = 1. We ask the two membership queries KiQit;)

and MQ(zNty). If both return 1, then our initial one-term
hypothesis ig; N z. Intuitively, we are hoping that the re-
sponses to the membership queries indicatedatisattisfies

a target term that is containeddpnthough, as we discuss in
the proof of Lemma 8, this is not necessarily the case. We
remember for later thai is the term that we edited, and that

242

z is an instance that we are assuming satisfies the associated The following lemma is the heart of the correctness ar-

term of the target formula. The fact that we remembger gument.

instead of NULL, indicates that we could later legitimately

receive a negative counterexample satisfying this terat; th Lemma8 Let oo = &1 V t2 be an initial theory, and let

is, that this term might not be full. ®* = TV V I3 be a target theory, with the T} labeled so
If, instead, MQznt,) = 0, then we perform a binary thate = [t @ T7| + [t2 @ T5| < [t1 @ T5| + [t2 ® T7.

search fromzNt; to z, and our initial one-term hypothesis ~ Consider a run of REVISEUPTOE(io, €). If the positive in-

is t; N z plus whatever additional variables were found by stance x used in Line 1 satisfies only the one target term 1,

the binary search. In this case, we should never see a negaand MQ(2N(t; N t2)) = MQ(aN(t1 Nta)) = 0, then the

tive counterexample to this term, so we make the associatedbranch of the “Try both” where i = j finds the target theory

positive instance NULL. (If we do receive a negative coun- using at most O(e? logn) queries.

terexample, it indicates that we are in the wrong branch of

the “try both.”) Again,t; is the edited initial theory term. Proof. First, we point out that the pivot exception in binary
The final possibility is that MQuMit;) = 0, but search will not occur becausecovers only one of the two

MQ(znt1) = 1. If Ty (z) = 1, then it must be that’ target terms.

contains some variables frof \ ¢, since MQznt;) = 0. We proceed by cases. _

Thus, we can be certain that = znt, satisfies only the Case I: Both MQ(z20t;) = 1 and MQ(at;) = 1.

other target term. So, if MQu'Nt,) = 1, then we use The initial one-term hypothesis created in Line 2 &-R

(t> N ') as our initial one-term hypothesis. If not, then we VISEUPTOE is¢; N x. Call this term of the hypothesis.
do a binary search froifa’Nt,) to 2 to find which variables ~ Notice that7" cannot covefly". This is true if7; contains
we need to add t6, N« to create our initial hypothesis. Ei- any variables not ii;. Even if all T3*'s variables are irt;,
ther way, we indicate that our hypothesis term has actually however,I’ still cannot covefl7", since the hypothesis of the
been derived from,, and that it is full, so we should never ~ lemmais that does not satisf{7", andI’ = t; N z.

receive any negative counterexamples to it. LT Ct.)

Now let us explain what we do if one or both of SinceT; (z) = 1, it must be thatl” coversT;. Thus,
MQ(aM(ty Nts)) = 1 or MQ(zN(ty Nt3)) = 1. In this anquounter_example to E®) V*/hereh includesT must be
case¢ = t; N t, plays a very similar role to; above in the positive, or it contradicts thaf* C T Note that so far we
case where we assumed that both these membership querid?@ve use only a constant number of queries. _
returned 0. If both membership queries return 1, thenwe ini- FOr €ach subsequent positive counterexampiee first
tialize our one-term hypothesis to be) =, andzNt is the assume thay does not satisfyl;", soy should be used to
associated positive instance, and we must “try both” associ create a second hypothesis term derived ftanNotice that
ations of the derivation of N z with ¢, andt,. (l.e., when ¥ = vty also cannot satisfy’?, sincel; has no outside
a second term is added, it should be derived fromutiher variables. So, if MQy') = 1, then we can initialize the
initial theory term). second hypothesis term tpN y, and if not we can do one

If exactly one of MQzit) and MQ(zNt) is 1, then we binary search fromy’ to y to decide which additional outside

can do a binary search betweent and a1t or vice versa ~ Variables should be added ton y. Thus initializing the
and derive a hypothesis term that is full. In this case the S€cond term requirés(elog n) queries.

associated positive instance is NULL, but we still have to é)”_e sfpecial_case_can arise. If NI©Q) :Il andt; Ny bg Th
“try both” possibilities ¢, andt,) for the derivation of the (&nd, in fact, sincey is a counterexample, it must be that
new term. t; Ny C T), then intuitively we certainly do not want to add

Unlike the monotone case, once we have a one-term hy_tmy as a second hypothesis term, because then the first term

pothesis, we are not always sure whether subsequent [xaaositivwOUId be reldundant. F_ormailly, we c;’:m argue as fQHOWS' If
examples should be used to add variables to an initial the- POty andy’ = yNt; satisfyT7, thenl has all its variables
ory clause in order to generate a new hypothesis clause, ofh f and indeed in; N y. I;lowe.ver! sincg; Ny C T, that
to delete variables from an existing hypothesis clause. OurWOUId mean thal’ coversly, which is false. So, at least one

: : : ; . fy ory’ satisfiesI’*. In this case (checked for in Lines 18—
algorithm is designed so that an incorrect guess will only 'Y 9Ty i o ;
pr%pagate down gtlwice: if we make two falsg assumptiong, 21 of REVISEUPTOE), we can safely use the inside variables
the algorithm will backtrack. The places where assumptions gfgl/ (t‘.’Vh'C*f‘ arrreﬂshe same as the inside variableg pfo make
are made are in with the initial counterexample, which may € ?A}(r)]ns _rot .d trving t do start dh
be used to edit one or the other initial term, and then, given th gntlns ead we :l;x(re rylné:! 0 UGEO S ahr ageclon y-
a one-term hypothesis, whether to use a positive counterexPON€SIS l€rm, we maxe one binary searcn, u (glogn)

ample to edit the existing term or to create a new term. membership queries, to initialize a second term of our hy-
P g pothesis. After that, we are in the subroutireVRSEDOWN,

4.2 CORRECTNESS AND QUERY COMPLEXITY Wthh performs Only deletions to Our_tWO'term hypotheSiS,
]] using only a constant number of queries per deletion. Thus,
We first make an observation aboutRSeDowN that fol- jf ; actually satisfied?*, we obtain the target using at most
lows immediately from an examination of its code. O(e) equivalence and (e logn) membership queries.
doesnor satisfy T2, we backtrack afte©(elogn) queries,
Lemma 7 When REVISEDOWN is called with its maximum and usey to perform at least one needed deletion from term
number of edits parameter e set to d, then it makes O(dlogn) T. Thus the total number of queries is at mogt) equiva-
queries. lence and) (e log n) membership queries per deletion.

243

ii. T Z t;. SozxNt; is a positive example that definitely satisfies term

Notice that in this cas& is not full. If we receive a 7 and not termi}". Now one of the previous cases applies,
negative counterexample to ED), then we can use it to with the roles of andz switched ana:N¢; replacinge. Thus,
makeT full, at a cost ofO(elogn) queries. After this, we this is equivalent to Case | in the second branch of the “Try
are in the same situation as Case L.i. both,” and the complexity analysis is subsumed by that of

The other possibility is that we receive a positive coun- Case |. O

terexample. We now digress a bit to describe some proper- Remark: The only place we used the restriction.othat
ties that our one-term hypothesis must have, and then returnviQ (21(¢; N ¢2)) = MQ(aN (¢ Nt2)) = 0, was to restrict
to describing how the positive counterexample is handled. the number of cases in the proof. The cases correspond to
Let = be the positive instance that was used to créate the different ways in which the initial one-term hypothésis
We claim that the following must hold: created.
. - _ . _ The arguments for the case where we instead work with
1. T includes all inside variables df", but no outside 4 4, to create the initial one-term hypothesis are broadly
variables. similar, and will be included in the full paper.

2. T; contains at least one outside variable, and the sets OfTheorem 9 We can revise two term unate DNF in

i I * * isi i ©
outside variables df" and7; are disjoint. O(e? logn) queries, where e is the revision distance between

the initial and target theories.

Recall that MQznt;) = MQ(znt;) = 1, but by as-
S‘impt'on’ti does not covef/;". Now also by* assumptli)n, Proof sketch. \We make repeated calls toeeERISEUPTOE
Ty(x) = 1, so it must be thatnt; satisfiesIy. Sincel; with the error parameter set ©92,4,8, ... until REVISE-
contains variables not ify a';‘d x andz0t; differ on those ypToE returns success. We claim that this happens by the
variables(t; must satisfyl;". SincexNt; andz(t; satisfy ime the error parameter reaches or first surpasses

two different target terms, and both those instances have al consider first the case where the initial positive example
variables in/; \ ; set to off, neither target term can have any ;. covers only one term and the other condition of Lemma 8
variables from; \ ¢;. Now ltem 1 follows becausé was is met. Lemma 8 guarantees that the branch of the “Try both”
initialized to¢; N =, and allT;’s inside variables are from ihat has the “right” value of halts afterO (e? log n) queries

t;. Next,T;" must contain outside variables, because other- yith the target theory. Furthermore, the “wrong” branch of

wiset; would coverl;. Target termily cannot containany the “Try both” also keeps track of how many revisions it has
of T;"’s outside variables, because those variables are off in\;,54e as it goes along, so it must halt after making at most

xNt;, which satisfied>*. This concludes the argument that O(elog n) queries as well.

ltem 2 holds. o The case where the conditions of Lemma 8 do not hold
Now consider a positive counterexampieto EQ(T'). because there is a target term all of whose inside variables
there are three possibilities. One is that we execute LiBes 1 516 in the intersection of the two initial theory terms has a
22 of REVISEUPTOE because; Ny C T'and MQ(y') = 1, broadly similar argument.
wherey’ = y0t;. In this case, we can argue exactly aswe — Consider next the case where the initial positive exam-
did for this situation in Case Li that at least oneyobr y ple covers both terms, and at least one branch of the “Try
must satisfyl", and itis fineto edif " toy N7T. ~ both” catches a pivot exception thrown by binary search.
The second possibility is thgtcovers all the inside vari- The pranch that throws the exception can have made at most
ables of77". In this case, editing’ to becomel” Ny is per- O(e? logn) queries before throwing the exception. After the

forming necessary deletions. Before doing that we will have exception we restart the program with a new counterexample
called ReviseDowN, but it must always terminate within that js guaranteed to satisfy the conditions of Lemma 8.
O(elogn) queries, so that can do no harm.. Finally, we have the case where the initial positive ex-
Otherwisey is missing some inside variablesBf, so amplez satisfies both terms of the target, and neither branch
so isy’ = yNt;. Thus a binary search fropi to y is guar- of the “Try both” finds a pivot. This means that all of the
anteed to find us a second hypothesis term that is full with additions done are necessary to both possible revisioas (th
respect tdl", so REvISEDOWN will return the target for- current term tal’* or to 77). As in the discussion for the
mulainO(elogn) queries. monotone case, if both initial terms are revised, in their pa
Case II: MQ(z0t;) = 0. allel branches, to the same target term, then one of those
This implies thatl;” ¢ t;. In this case, we perform a bi- revisions is the correct one. If they are revised to différen
nary search fronxN¢; up tox. That binary search will find target terms, then that revision is at least as efficientads-re

the necessary additions tpN = usingO(e logn) member- ing them to the opposite target terms. O
ship queries, and after that the analysis is just as in Case 1.
The total asymptotic query complexity is the same. 5 REVISING READ-ONCE FORMULAS
Case III:
MQ(znt;) = 1, and MQzNt;) = 0. In this section we outline the improved deletion-only revi-
Notice that in this cas&;* must contain variables notin sion algorithm for read-once formulas.
t;, specifically some variables frotpa— ¢;. (If the necessary An Q(elog(n/e)) lower bound to the number of queries
additions tarNt were all outside of; then MQ(zNt;) would is proved in [15]. It is also shown in [15] that using only one
be 1.) Furthermore, since those variablesdfaen xzNt;, it type of query, one needs a number of queries that is linear in
must be thatnt, satisfiesl’". n.

244

Theorem 10 Every n-variable read-once formula ¢ has a
revision algorithm that uses O(elogn) queries, where e is
the revision distance between p and the target concept.

Proof outline. Let us review a bit of terminology from [14].

We assumer.l.o.g. thaty is monotone. Ify' is a subfor-

mula of ¢, then every truth assignmesrtcan be written as

(x1,x2), called thep'-partition of x. Herex; contains all

the variables iny’, andxs contains all the variables not in
!

Lety' be a subformula ap and letP be the path leading
from the root ofp to the root ofy’ in the binary tree repre-
sentingp. Then, using the commutativity of AND and OR,
 can be written as

(- (¢ opr)op1---03¢3) 0 2) 0101, (1)
wherey, ..., @, are the subformulas corresponding to the
siblings of the nodes aP, ando, ..., o, are eithem or V.

Let the sets of variables occurringgn be X;, and the set of
variables occurring ip’ beY. These sets form a partition
of {z1,...,z,}. Now leta be the partial truth assignment
that assigns 1 (resp., 0) to every variableXipif o; is AND
(resp., OR), for every = 1,...,r. Thena is called the
partial truth assignment sensitizing ¢'.

Also, given a substitutiomr, let oo be the formula ob-
tained by replacing each variablegnby the corresponding
constant fromg. A subformula isconstant if it computes

a constant function. Maximal constant subformulas must be

pairwise disjoint. Two substitutions ando, areequivalent

if ¢o1 andypo, compute the same Boolean function. Then it

holds that substitutions; ando- are equivalent if and only

if their sets of maximal constant subformulas are identical
The learning algorithm is based on the recursive proce-

dure ANDCONSTANT of Figure 1. This procedure differs

from the corresponding procedure in [14] at one point only.

The procedure RDFORMULA is replaced by the procedure

FINDNEWFORM, described below. INDCONSTANT takes

a formulap and a counterexampieand returns a substitu-

tion o, which fixes a subformula to a constantsuch that

this subformula must compute constarib any representa-

tion of the target concept. Furthermore, this subformula is

and in any representation 6f. The number of queries used
in the first case is logarithmic in the number of variables of
Y28

In the second case, we ukeajueries for somé& and we
obtain a subformula such that the number of its variables
decreases by a facté¥(1/2%). The procedure IRDCON-
STANT then continues recursively. This guarantees that after
O(logn) membership queries the procedure finds a subfor-
mula that is a maximal constant subformula in any represen-
tation of C', and the value of the constant. One can then find
a substitution with a minimal number of variables that farce
the given constant value of the subformula by a standard re-
cursive computation that does not involve making queries.

Let us consider the version ofifD CONSTANT in Fig-
ure 1. At the bottom of the recursion no queries have to be
asked: ifx is a counterexample to a formula consisting of a
single variable, then the revision must be fixing this vadgab
to the constant different from.

If the input formula has more than one variable, then
FIND CONSTANT starts by making sure that M@Q) = 0 and
MQ(1) = 1. Otherwise, the whole subformula is identically
true or false. Now we pick an approximately half-size sub-
formulay’ of ¢. Then ANDCONSTANT asks the member-
ship queries M@0, a) and MQ(1,), wherex is the partial
truth assignment sensitizing. Depending on the outcome
of these queries, we distinguish two cases.

Case I MQ(0,) = MQ(1,a) =cforc=0o0r1.

This case remains the same as in [14], and so its discus-
sion is omitted.

Case II: otherwise, it must be the case that NQa) =
0 and MQ(1, «) = 1. Then for every truth assignmemntto
the variables ofy’ it holds that

MQ(y,a) = ¢¥'(y), 2

wherey' is the subformula correspondinggbdin any repre-
sentation of the target concept. Now we start consideriag th
counterexample&, which we write agx;, x»), correspond-
ing to its ¢'-partition. By Equation 2, we can compare the
known value ofp’(x;) to ¢’ (x1) by asking the membership
query MQx1, a). There are two possibilities, and only one

a maximal constant subformula in any representation of the of them is different from [14].

target concept.

In the previous version of IKDCONSTANT, at each it-
eration, the current formula was split by finding an approx-
imately half-size subformula op, i.e., a subformula con-
taining between 1/3 and 2/3 of the original variables (which

Case IL1: MQ(x1,a) = 9¥'(x1) # ¢'(x1). Thenx;
is a counterexample to the hypothegisfor the target con-
cepty’. Thus we can continue recursively, to find a con-
stant substitution in a problem which has at most two-thirds
of the original variables. Note that by Equation 2 we can

always exists). The algorithm was recursive, so there coulduse theoriginal membership queries to simulate member-

be a total 0fO(log n) levels before obtaining a constant-size

subformula. For each iteration, there were three cases. In

one, we used(logn) queries and did not need to recurse. In
another, we used onl§(1) queries to recurse. These cases

are unchanged. In the third case, we needed to use a proce-

dure called INDFORMULA that could us®(logn) queries.
This is where the)(log® 1) factor in the query complexity
comes from.

The modified version of IlRDCONSTANT works as fol-
lows. It either succeeds in finding a subformula (which may
bey itself) that is a maximal constant subformulain any rep-
resentation of the targét, and the value of the constant, or
it reducesp to a subformula that evaluatedifferently in ¢

245

ship queries to the new target concept.

Case IL.2: MQ(x1,a) = ¢'(x1) = ¢'(x1) =d.

Itis in this case that we have to modify the original algo-
rithm in [14].
Let us write p as in Equation 1. Putx,
(x2,1,-.-,X2,), Wherex,; corresponds to the variables
in X;. Let; be the subformula corresponding ¢q in
some representation of the target. Lety; (resp.,z;) be
the value computed at; in ¢ (resp.,+) on inputx, for
i =1,...,r, and lety,41 = z,41 = d. Then by def-
inition y; = yiy1 0; pi(x2,) andz; = zi41 0; Yi(Xa2,i)
fori = 1,...,7. Also,y; = p(x) # ¥(x) = z;. Let
B; be the partial truth assignment that assigng to X;

for j = 4,...,r and is otherwise identical ta. Then attributes.J. of Comput. Syst. Sci., 50(1):32—40, 1995.

z; = MQ(x1, B3;). Earlier version in 4th COLT, 1991.

As noted,y,+1 = zr+1 andy; # z;. Just as the proce- [4] N. Bshouty and L. Hellerstein. Attribute-efficient
dure ENDFORMULA, the procedure INRDNEWFORM finds learning in query and mistake-bound modelsCom-
ani (1 < i < r)suchthaty;+; = z;4+1 andy; # z;, and put. Syst. Sci., 56:310-319, 1998.
we returni. For thisi p(xs ;) # ¢ (x2,;). Thus we can con- [5] R. Davis and W. Hamscher. Model-based reasoning:
tinue by a recursive call op; using the counterexampte ;. Troubleshooting. In H. E. Shrobe and the American
For a giveni, one can evaluatg; without any membership Association for Artificial Intelligence, editor&xplor-
queries fromp, and one can use the remark at the end of the ing Artificial Intelligence: Survey Talks from the Na-
previous paragraph to evaluatewith a single membership tional Conferences on Artificial Intelligence, chapter 8,
query. pages 297-346. Morgan Kaufmann, San Mateo, CA,

FINDFORMNEW finds the required by performing a 1988.
weighted binary search. Lgp;| denote the number of vari- [6] J. Goldsmith and R. H. Sloan. More theory revision
ables in the subformula;. Let the weightsv; be defined by with queries. InProc. 32nd Annu. ACM Sympos. The-
wj = |pj_1]+ |p;| forj = 2,...,r. The binary search pro- ory Comput., 2000. To appear.
ceeds by updating an intervAl= [a, b]. Initially « = 2 and [7] Z. Kohavi. Switching and Finite Automata Theory.
b=r. Lets =3, w;. Note that for the initial value of McGraw-Hill, New York, NY, second edition, 1978.

¢) [8] M. Koppel, R. Feldman, and A. M. Segre. Bias-driven
515 < 5(11{3)71 Query the valué such thah_;_, w; > s/2 revision of logical domain theorieslournal of Artifi-
ande:a wj < s/2. If yo # 2 (resp.ye = z¢) then update cial Intelligence Research, 1:159-208, 1994.
I'to[¢+ 1,b] (resp., to[a, ¢ — 1]). If I is nonempty, then [9] J. de Kleer, A. K. Mackworth, and R. Reiter. Charac-
updates accordingly, and continue the search. Otherwise, terizing diagnoses and systemsitificial Intelligence,
the search is over, and we reture= ¢ (resp.,; = £ — 1) if 56:197-222,1992.
ye 7 z¢ (resp.ye = z¢). In both cases > wy > |p;|. [10] R. J. Mooney. A preliminary PAC analysis of theory

If the search is completed aftérqueries then the last revision, volume lll: Selecting Good Models, chapter 3,
value ofs is at mostl /2*~! times its original value. Hence pages 43-53. MIT Press, 1995.
for the valuei returned|y;| < :},;%n The bound above [11] D. Ourston and R. J. Mooney. Theory refinement com-
implies that the recursive call Is made on a formula of size bining analytical and empirical methodartificial In-
O(n/2k). telligence, 66:273-309, 1994.

We also note that in order to simulate the membership [12] B. L. Richards and R. J. Mooney. Automated refine-
gueries in the recursive call by membership queries to the ment of first-order Horn-clause domain theoriéga-
original target, one uses the following fact. Legtbe the chine Learning, 19:95-131, 1995.
partial truth assignment that assigns 1 (resp., @J @nd to [13] E. Y. Shapiro.Algorithmic Program Debugging. MIT
all X; with j > 4 if o; is AND (resp., OR) and is identical to Press, Cambridge, MA, 1983.
aonX;forl < j < i Then for every truth assignmewt [14] R. H. Sloan and G. Turan. On theory revision with
to X;, it holds that queries. InProc. 12th Annu. Conf. on Comput. Learn-

MQ(w, i) = thi (w). Téggg.lemy, pages 41-52. ACM Press, New York, NY,

We claim that FNDCONSTANT usesO (log n) member- [15] B. S;'c')rényi. Revision_ .algorithms in comp_utationa}I
ship queries. There are three cases to consider. The proce- learning theory. Scientific Student Competition, Uni-
dure GROWFORMULA usesO(logn) queries and does not versity of Szeged, 31 pages, 2000. (In Hungarian.).
make any recursive calls. IfiIRkDCONSTANT gets into the ~ [16] G. G. Towell and J. W. Shavlik. Extracting refined
else branch and it continues by looking at then it uses rules from knowledge-based neural network&chine
a constant number of queries, and continues with a recur- Learning, 13:71-101, 1993.

sive call to an input that is at most two-thirds of the origina
size. Finally, if it uses the procedureN® FORMNEW, then ACKNOWLEDGMENTS
it makesk membership queries for somteand it continues
with a recursive call to an input that is at mox1 /2%) times

the original size. Hence the upper bound follows by induc-
tion. The rest of the description and analysis of the alparit

is again identical to [14] and so it is omitted.

We want to thank Martin Mundhenk for conversations that
forced us to focus on these constructions, and Andy Klap-
per and Maury Neiberg for putting up with us through the
deadline crunch.

References

[1] D. Angluin. Queries and concept learnin@/achine
Learning, 2(4):319-342, Apr. 1988.

[2] D. Angluin, M. Frazier, and L. Pitt. Learning conjunc-
tions of Horn clausesMachine Learning, 9:147-164,
1992.

[3] A. Blum, L. Hellerstein, and N. Littlestone. Learning
in the presence of finitely or infinitely many irrelevant

246

FINDCONSTANT(¢p, x)
if ¢ has one variable
return substitutiory fixing it to constant — x
if MQ(0) ==1or MQ(1) ==
return substitutioro fixing ¢ to the appropriate constant
¢’ = an approximately half-size formula of
a = the partial truth assignment sensitizipg
if (MQ(0,) == MQ(1,0) == ¢)
then return GROWFORMULA (@, ¢', ¢)
else
(x1,x2) = they'-partition ofx
if MQ(x1,) # ¢'(x1)
then FINDCONSTANT(p(-, o), x1) I'look in ¢’
else
i = FINDNEWFORM(¢p, ¢', x)
FINDCONSTANT(yp;, X2,;) Il look in ;

Figure 1: The procedurelRD CONSTANT.

247

