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Abstract

We give a revision algorithm for monotone DNF
formulas in the general revision model (additions
and deletions of variables) that usesO(m3

e logn)

queries, wherem is the number of terms,e the
revision distance to the target formula, andn the
number of variables. We also give an algorithm for
revising 2-term unate DNF formulas in the same
model, with a similar query bound. Lastly, we
show that the earlier query bound on revising read-
once formulas in the deletions-only model can be
improved fromO(e log2 n) toO(e logn).

1 INTRODUCTION

A doctor has a theory about the patient and makes recom-
mendations. They don’t work. The doctor must change the
theory. Rather than start from scratch again, she runs diag-
nostics designed to lead to incremental changes in the theory.
If she was nearly correct, this should be more efficient than
beginning all over again.

The goal of concept learning, and indeed of all learning
from examples, is to obtain a representation of a concept or
function on some domain so that one can use it to predict the
function’s value on new instances from the domain. How-
ever, in using this function on some performance task, one
may well learn that it is not exactly correct (e.g., in med-
ical diagnosis if the patient does not recover). Hence one
wants torevise this function. Intuitively, if one already has
a roughly correct function, then altering it to be exactly cor-
rect should require much less training data than learning the
function from scratch. This paper and previous work [6, 14]
show that this is indeed the case.

Note that what the computational learning theory com-
munity calls aconcept is often referred to as atheory in logic,
and either a theory or a knowledge base elsewhere in artifi-
cial intelligence. We will henceforth refer to the problem
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of revising a concept by its most common name in machine
learning:theory revision.

We frame this problem in the model of learning with
membership and equivalence queries. We believe that the
query model with both equivalence and membership queries
is especially well suited to the theory revision problem for
two reasons. First, in practice theory revision would be used
for deployed AI systems that make mistakes, and typically
a human expert would be the one to say that a system had
made a mistake. So there is a human expert who is provid-
ing something like counterexamples to equivalence queries,
and this human expert should be able to answer membership
queries as well. Second, as we will discuss in more detail,
there is evidence that it will be very difficult or impossible
to make progress on theory revision using only equivalence
queries (or only PAC-type sampling).

In this paper, we present three new results. We show how
to revisem-term monotone DNF, and 2-term unate DNF, in
timeO(log n � poly(m) � poly(e)), wheree is the minimum
number of revisions needed, andn is the total number of
variables, allowing essentially arbitrary revisions to the ini-
tial theory; as long asm = o(n), this is faster than relearn-
ing the theory from scratch. Each of these results improves
over a previous result for 2-term monotone DNF [6]. Addi-
tionally, we reduce the query complexity for revising read-
once formulas fromO(e log2 n) to O(e logn). This is very
close to optimal; the lower bound on the number of queries
is
(e log(n=e)) [15].

We next explain a bit more about the model of theory re-
vision used here, put our results into context, and then com-
pare the results in this paper with previous results.

1.1 MODEL OF THEORY REVISION

The key metric for theory revision is thesyntactic distance
between the initial theory and the target theory. The syn-
tactic distance between a given concept representation and
another concept is the minimal number of elementary op-
erations (such as the addition or the deletion of a literal or
a clause) needed to transform the given concept representa-
tion to a representation of the other concept. Our goal in
theory revision is to find algorithms whose query complex-
ity is polynomial in the syntactic difference (orrevision dis-
tance) between the initial theory and the target theory, but
only polylogarithmic in the total number of possible vari-
ables. Thus, this work has some similarities to the work on
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attribute-efficient learning [3,4].
A particular measure of revision distance is determined

by fixing a specific set of elementary operations, which we
will call revision operators. Following the spirit of much
work in machine learning on theory revision, we consider
two sets of revision operators, the deletions-only revision op-
erator and the general revision operator. These are defined in
Section 2.

1.2 RELATED WORK

Mooney [10] formulated an approach to theory revision
based onsyntactic distances, and was the first to look at the-
ory revision in the context of computational learning theory.
He considered PAC-learnability and gave a positive result for
sample complexity (which is equivalent to a positive result on
query complexity). Computational efficiency was left as an
open problem.

Sloan and Turán [14] specified the precise model of the-
ory revision that we use here. In the deletions-only model,
they gave revision algorithms for 2-term unate DNF using
O(e) queries, unatek-DNF usingO(ke logn) queries, and
read-once formulas usingO(e log2 n) queries, wheree is the
revision distance between the initial and the target theories,
andn is the number of variables. In the general model, they
gave revision algorithms for threshold and parity functions.
Goldsmith and Sloan [6] gave algorithms for 2-term mono-
tone DNF in the general model and for propositional Horn
sentences in the deletions-only model.

More generally, there is a wide AI literature on theory
revision (e.g., [8,12,16]). Many systems for theory revision,
such as EITHER [11], have been implemented.

The problem of correcting errors is pervasive, and error-
correcting algorithms appear in a variety of contexts. Among
them are fault analysis of circuits in switching theory (see,
e.g., Kohavi [7]), program debugging (e.g., [13]), and model-
based diagnosis (see, e.g., [5, 9]). See Sloan and Turán [14]
for a somewhat longer discussion of these connections.

Sloan and Turán [14] present a family of DNF formu-
lae onn variables withO(n) terms for which any revision
algorithm requires
(n) queries. Thus, the problem of the-
ory revision as we have posed it is interesting only for DNF
formulas with substantially fewer terms than possible vari-
ables (and only for Horn sentences with substantially fewer
clauses than possible variables). Note that in the general
model, this does not mean that the initial theory must con-
tain many fewer terms or clauses than variables, but that the
universe ofpossible variables considered in revising the ini-
tial theory must be much larger than the number of terms or
clauses, in order for revision to be more efficient than from-
scratch learning.

1.3 DISCUSSION OF OUR RESULTS

In the deletions-only model, revising unate formulas is al-
most identical to revising monotone formulas, since the ori-
entation of every variable that can appear in the target is
known from the start. This isnot the case in the general
model. That is why the first result on DNF formulas was for
2-termunate DNF in the deletions-only model [14], but it
was then extended to 2-termmonotone DNF in the general
model [6].

In the deletions-only model, given a positive counterex-
ample to one’s current hypothesis (or to the initial theory),
it is relatively straightforward to use membership queriesto
decide which term to revise (i.e., to solve thecredit assign-
ment problem.) Consider revising a 2-term unate DNF in the
deletions-only model. If, say, instancex is positive for the
target but satisfies neither termt

1

nor t
2

of the current hy-
pothesist

1

_ t

2

, then one or both oft
1

or t
2

has at least one
extra variable to be deleted. Since neithert

i

needs to have
any literals added to it, then the following will tell us which
one to revise: First, ask a membership query ofx modified
by turning “off” any literals not int

1

. If the response is yes,
thenx must satisfy a term of the target that is syntactically
a subset oft

1

, and we can delete fromt
1

any variables not
“on” in x. Next, ask a membership query ofx modified by
turning “off” any literals not int

2

. Again, if the response is
yes, then we can delete fromt

2

any variables not “on” inx.
This was one of the key ideas used by our earlier algorithm
for revising 2-term unate DNF [14].

The situation becomes more complicated when revisions
can include the addition of variables. In particular, in the
unate case, we do not knowa priori how to turn off variables
in an instance if those variables do not occur in any term of
the initial theory. The problem is that if a literal involvingx

i

needs to be added, andx
i

did not occur in the original theory,
we do not know whetherx

i

or �x
i

occurs in the target.
However, even for monotone DNF, there are additional

complications in the general model. By taking a positive
counterexample and turning off all the variables that are not
in a given hypothesis term, we can tell whether to make dele-
tions from that hypothesis term. However, if we know that
additions are needed, it is difficult to tell which initial the-
ory term needs the added variables. In our earlier algorithm
for revising 2-term monotone DNF, we solved this problem
by trying in parallel (or, equivalently, nondeterministically)
to reviseboth terms from a given counterexample. Such a
strategy is inherently exponential in the number of terms.

Thus, new ideas were needed in the general model of
revisions to extend the algorithm for 2-term monotone DNF
both to monotone DNF, and to 2-term unate DNF.

Notice that while the result on revising monotone DNF
holds for any number of terms, it is most interesting for a
number of terms that iso(n), wheren is the number of vari-
ables. Once the number of terms is
(n), then one cannot
do substantially better than to throw away the initial the-
ory and use Angluin’s algorithm to learn the formula from
scratch [1]. This is because Sloan and Turán [14] have exhib-
ited a�(n)-term monotone DNF that requires
(n) queries
to revise a single error, and Angluin’s algorithm requires
onlyO(mn) queries to learn anm-term monotone DNF.

Lastly, for read-once formulas in the deletions-only mod-
el, we lower the query complexity fromO(e log2 n) to
O(e logn), wheree is the revision distance between the ini-
tial read-once formula and the target andn is the number of
variables. We conjecture that for the type of formulas we
consider (monotone, unate, and “near-unate,” such as Horn)
if there is a revision algorithm at all, then there is a revi-
sion algorithm whose query complexity’s dependence on the
number of variablesn is only multiplicative inO(log n), not
polylogn. (Note, however, that there mayalso be a depen-
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dence on the number of terms or clauses in the formula being
revised.)

2 NOTATION

We are using the standard model of membership and proper
equivalence queries (with counterexamples), denoted by MQ
and EQ [2]. In an equivalence query, the learning algorithm
proposes ahypothesis, a concepth from the concept class,
and the answer depends on whetherh = C, whereC is
the target concept. If so, the answer is “correct”, and the
learning algorithm has succeeded in its goal of exact iden-
tification of the target concept. Otherwise, the answer is a
counterexample: any instancex such thatC(x) 6= h(x). In a
membership query, the learning algorithm gives an instance
x, and the answer is either 1 or 0, depending onC(x); that
is, MQ(x) = C(x), where againC is the target concept. We
assume throughout that the concepts TRUE and FALSE are
allowed as equivalence queries.

We use standard notions from propositional logic, such
as variable, term, disjunctive normal form (DNF), monotone,
etc. A formula isread-once if no variable occurs in it more
than once; a formula isunate if no variable ever occurs in it
both negated and unnegated.

The symbol� will always denotestrict subset.
We will need to combine terms of the initial theory and

various hypotheses of our revision algorithms with instances
in various ways. We define the operationt \ x for a termt
and an instancex to be aterm that is theand of those literals
in t that are satisfied byx.

On the other hand, we will need intersection-like opera-
tions that returninstances. The meaning of the instancex\ t
in the monotone case is to set tooff, that is, 0, all bits ofx that
do not occur in the monotone termt. In the unate case, we
no longer know which orientation of a variable not occurring
in a term is off.

Thus we define two different operations:x\t andx\t for
“intersecting” instancex 2 f0; 1g

n with termt to get back a
new instance. These intersections are always with respect to
an initial theory'.

“Intersect down” is defined by

(x\t)[i℄ =

8

<

:

x[i℄ if one ofv
i

; �v

i

2 t

(' n t)[i℄ if v
i

or v
i

2 ' n t

�x[i℄ otherwise,

and “intersect up” is defined by

(x\t)[i℄ =

8

<

:

x[i℄ if one ofv
i

; �v

i

2 t

(' n t)[i℄ if v
i

or v
i

2 ' n t

x[i℄ otherwise.

For two vectorsx; y 2 f0; 1g

n, we will usex 
 y to
denote the set of indices or variables on whichx andy dis-
agree; thusjx
yj is the number of variables on whichx and
y disagree. We overload this operator to also indicate the
symmetric difference of two terms, namely the set of literals
that appears in exactly one of the two terms.

If ' = T

1

_ T

2

, thenT
�{

denotes the term other thanT
i

.
Therevision distance between a formula' and some tar-

get conceptC is defined to be the minimum number of appli-
cations of a specified set of revision operations to' needed

to obtain a formula forC. In thedeletions-only model, our
specified set of revision operators is fixing an occurrence ofa
variable to the constant 0 or 1. This corresponds to allowing
deletions of variables and terms in DNF theory revision.

In the general revision operator, we are also allowed to
add variables to a DNF term, with the following limitations
in the unate case. First, a literal that appears in the initial for-
mula cannot appear negated in the target formula. Second,
the target formula must also be unate: in other words, vari-
ables not used at all in the initial formula cannot be added
into one term negated and into another term unnegated. Fur-
thermore, in our construction, all intermediate hypotheses
must also be unate.

Note that this model allows us to entirely replace one
term of the initial theory by a new term with entirely distinct
variables. The revision distance for this replacement is the
sum of the length of the deleted term (all of whose variables
must be fixed to true) and the length of the added term. On
the other hand, the revision distance for simply deleting a
term with no replacement is only 1, since this can be done
merely by fixing any one variable of the term to be false.

3 REVISING MONOTONE DNF

In this section, we present an algorithm to revise a mon-
otonem-term DNF formula in the general revision model.
This extends the algorithm for revising 2-term DNF formu-
las in [6].

3.1 DESCRIPTION OF ALGORITHM

A monotone DNF formula can be viewed as a collection of
subsets of the set of variables, with each term defining a sub-
set. We say that one termcovers another if it is a superset of
the other. When convenient, we sometimes treat monotone
terms as elements off0; 1gn, where the bit vector has a 1 ex-
actly in those positions where the term contains a variable.If
a termt covers a term of the target formula, then MQ(t) = 1

and any counterexamplex to EQ(t) must satisfy the target
and nott; namely,x must be positive.

If Y � Z and MQ(Y ) = 0 and MQ(Z) = 1, thenZ
covers a target term not covered byY . We can use binary
search to find a subset ofZ containingY that covers a target
term. In fact, we can find a setA of variables and a variable
l 2 Z n (Y [ A) such that MQ(Y [ A) = 0 but MQ(Y [

A [ flg) = 1.
We previously [6] used a sort of binary search for this

purpose. In the present setting, however, one new complica-
tion arises. We would like to considerl a necessary addition
to Y . However, ifZ covers several target terms, it may be
necessary to addl to Y to cover one of those terms but not
another. This could lead to our building upY to cover more
than one target term in an inefficient manner. We call such an
l apivot, because the choice of which term to cover pivots on
whetherl is added toY . We recognize a pivot because with-
out it,Z still covers a target term, so MQ(Z n flg) = 1. If a
pivot is found in the course of the binary search, we throw it
out and restart the search fromY toZ n flg.

With that in mind, we can now describe the algorithm.
The heart of the construction is the procedure REVISE-

UPTOE. It takes as parameters anm-term monotone DNF
formula' ande, the assumed revision distance from' to the
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Algorithm 1 REVISEUPTOE('; e). Revises', a set of mon-
otone terms, if possible using at moste revisions; otherwise
returns “Failure.” Note that if any subroutine either finds the
correct hypothesis or returns “Failure”, then this algorithm
also terminates. Also, if the error limite is ever exceeded,
this algorithm terminates immediately and returns “Failure”.

1: h = ; //the initial hypothesis
2: while EQ(h) gives a counterexamplex ande > 0 do
3: if MQ(x \ t) = 1 for somet 2 h then //delete

variables from hypothesis terms
4: for all t 2 h for which MQ(x \ t) = 1 do
5: t = t \ x

6: e = e� jt� (t \ x)j

7: end for
8: else //find a new term to add to the hypothesis
9: terms = ' //the set of terms to consider

10: min = e

11: FoundATerm = false

12: for all t 2 terms do
13: new = t \ x

14: numAddedLits = 0

15: while MQ(new) == 0 and numAddedLits <

e do
16: d = BINARY SEARCH(new; x)
17: new = new [ fdg

18: numAddedLits = numAddedLits + 1

19: if MQ(x� fdg) == 1 then
20: //x� fdg is a positive counterexample that

covers fewer goal terms
21: x = x� fdg

22: restart for all t loop with thisx by backing
up to line 9 to reset other parameters

23: end if
24: end while
25: if MQ(new) == 1 then
26: x = new

27: FoundATerm = true

28: min = min(numAddedLits ;min)

29: end if
30: end for
31: if not FoundATerm then
32: return Failure
33: else
34: h = h [ fxg

35: e = e�min //minimum number of edits done
on anyt 2 ' which contributed tox

36: end if
37: end if
38: end while

target. Ife is in fact too small, REVISEUPTOE('; e) fails,
ande is doubled. The claim, discussed in the next subsec-
tion, is that whenever the revision distance is� e, REVISE-
UPTOE('; e) succeeds, and uses only a bounded number of
each type of query.

Given', REVISEUPTOE('; e) constructs a hypothesis
monotone DNF formulah so that, at each stage of the con-
struction, each term ofh covers a term of the target formula.
At each stage of the construction, we get a positive coun-
terexample,x to h. (The initialh is ;, which is interpreted
as the everywhere-false formula.)

If x covers a target term already covered by a term ofh,
thenx is used to delete variables from any hypothesis terms
that cover a term covered byx. Sincex is a positive coun-
terexample, for anyt 2 h, it must be thatx \ t � t, so this
yields at least one deletion.

Otherwise,x is used to add a new term to the hypothesis.
For each initial termt, if binary search finds an unambiguous
extension oft\ x in x that covers a target term (has positive
membership query) with no more thane additions, then we
consider that a candidate new term. It is then treated as the
positive counterexample for each subsequent initial term.In
this way, if several initial target terms could be revised byx,
we get a new term that is a “close” revision (no more thane

additions) of each of them. In particular, if the revision dis-
tance is� e and the most efficient revision to that target term
is t

i

, then the new term is a revision oft
i

with no unnecessary
additions or deletions.

3.2 MONOTONE DNF CORRECTNESS AND
QUERY COMPLEXITY

For all of the lemmas below, we assume that' is anm-term
monotone DNF formula, and the target is anm0 monotone
DNF formula (m0

� m) with revision distance at moste
from'.

Lemma 1 Algorithm REVISEUPTOE (Algorithm 1) main-
tains the invariant that each term of its hypothesis covers
some term of the target. Therefore, any counterexamples
must be positive counterexamples.

Proof sketch. The initial counterexample is positive. Each
positive counterexample,x, covers at least one target term
T

�. If T � is already covered by a termt 2 h, then the “If” in
Line 3 of REVISEUPTOE must be true, andt is replaced by
t \ x, which still coversT �. (Note thatx cannot cover any
t 2 h, since it is a counterexample toh. This forces at least
one deletion if MQ(t\x) = 1.) If x does not cover any term
covered byh, then, unless REVISEUPTOE returns Failure,
Lines 9–37 add a new term toh that covers some target term
covered by the counterexamplex.

Lemma 2 Each counterexample that covers a target term
also covered by at least one term in h is used to delete vari-
ables from any terms t 2 h such that t \ x still covers a
term. Because each term in h must be queried, each deletion
requires O(m) queries.

Lemma 3 If x is used to add a new term to h, the new term
does not cover any target term already covered by h. Thus,
no two terms in h cover the same target term.
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Proof sketch. Supposet0 is added toh because of coun-
terexamplex. In order for the algorithm to reach Line 8, it
must be the case that for anyt already inh, MQ(x \ t) = 0.
Note thatt0 � x, by construction. Therefore,t \ t0 � t \ x,
so (by monotonicity) MQ(t \ t0) = 0.

Thus, there are at mostm terms inh at any time.
Note that eachx adds at most one term toh; once a set of

additions is found for somet 2 ', that new positive example
replacesx, and the process is repeated for eacht remaining
in '. Thus, the term produced is as near as possible to one
of the original terms.

Lemma 4 If counterexample x covers more than one target
term, say T �

1

and T �

2

(and perhaps others), and is used to
add a new term to h, then both T �

1

and T �

2

will be covered in
the most efficient manner from terms in '.

Proof. Note that no term inh covers eitherT �

i

, sincex
was not used for deletions.

Suppose that, for bothi, there are variablesv
i

2 T

�

i

n(x\

t). Then, the binary search from(x \ t) to x will eventually
find one of thev

i

s. (We call these variables “pivots.”) At
that point, the code backs up to Line 9 withx replaced by
the less ambiguousx� v

i

. Once the last pivot is found, any
additions to any(x \ t) must be variables that appear in the
unique target term still covered, or in the intersection of all
remaining covered target terms.

Suppose, however, that we add a term,new, to h that
covers bothT �

1

andT �

2

. We know that for any termt 2 ',
if t \ x was edited tonew, then this involved at moste ad-
ditions, and all those additions were inT �

1

\ T

�

2

, since no
pivots were found. Therefore, ift is the appropriate term to
revise toT �

i

ande is the correct error,new is a necessary
revision of t. Furthermore, ift0 is the appropriate term to
revise toT �

�{

, new is also a necessary revision oft0. Eventu-
ally, new will have oneT �

i

deleted, and the appropriatet or
t

0 will contribute another term toh—one that does not cover
T

�

�{

.

Lemma 5 A single addition of a term to the hypothesis re-
quires O(m2

e logn) membership queries.

Proof sketch. Note that there can be at moste additions
to anyx \ t for any t 2 '; if more additions are needed,
the attempt to edit that term fails. Each search for an addi-
tion requireslognmembership queries. However, even if the
counterexamplex covers a unique target term, the algorithm
may try each of them terms of' to find one that works. This
meansO(me logn) membership queries.

If x is ambiguous, then every time a pivot is found, the
entire additions procedure is restarted. Sincex can cover
at mostm target terms, this can happenm � 1 times, so
the entire search for one unambiguous addition may require
O(m

2

e logn) membership queries.

Theorem 6 REVISEUPTOE('; e) uses at most
O(m

3

e logn) membership queries and O(e + m) equiva-
lence queries, and succeeds if ' has revision distance less
than or equal to e. Therefore, an m-term monotone DNF
formula with an edit distance e from the target formula can
be revised using O(m3

e logn) queries.

Proof sketch. Note that it is possible to get an initial theory
that is, in fact, correct. Because of this possibility, we begin
by asking MQ('). If the answer is not “Correct!” we ap-
ply REVISEUPTOE('; e) for repeatedly doubled values ofe
until it produces a “Correct!”

We give the full analysis of REVISEUPTOE; the rest fol-
lows. Note that the addition of a term to the hypothesis may
involve simply copying that term from the initial theory, or
may also involve deleting some variables not in the coun-
terexample that triggers the addition, or perhaps some addi-
tions of variables inx that were not in the initial theory term.
The construction of the revised theory requiresm

0 additions
of terms to the hypothesis plus up toe additions of variables
to initial terms.

Each addition of a term to the hypothesis requires
O(m

2

e logn) queries, and there arem0

= O(m) terms, so
this requiresO(m3

e logn) membership queries needed for
additions.

There areO(e) deletions needed, and each deletion re-
quiresO(m) membership queries, for a total ofO(em),
which isO(m3

e logn) queries.
Finally, each addition of a term to the hypothesis and

each revision may require an equivalence query, for a total
of O(e+m) queries.

4 REVISING UNATE DNF

In this section, we present an algorithm that can revise a 2-
term unate DNF in the general model of revisions. The only
restriction we make is that we assume that no variable in the
initial theory has the wrong orientation. That is, ifx

i

occurs
in the initial theory, thenx

i

could be deleted, or moved to the
other term if it occurs only in one term, but we cannot delete
x

i

and add�x
i

.

4.1 DESCRIPTION OF ALGORITHM

Throughout this section, we will refer to a termt of a hy-
pothesis DNF asfull with respect to target term T

� if t’s
variables are a superset ofT �’s variables. Generally it will
be clear which target term we are referring to, so we will sim-
ply refer tot asfull. Intuitively, if t is full, then any necessary
additions have been found, andt requires only deletion edits.

We refer to the variables that do not occur in the initial
theory as theoutside variables, and those that do occur in the
initial theory as theinside variables.

We begin by explaining how we must alter two subrou-
tines, BINARY SEARCH used earlier in this paper, and RE-
VISEDOWN, used in our earlier work, in order to make them
work in the unate case.

4.1.1 Binary search

The BINARY SEARCH referred to in this section is different
from that used previously, in that it does not deal with sets
of variables, but withsettings of variables. When we look at
T n S, we are really considering the variables corresponding
to elements ofT 
 S. When we divideT 
 S into two
roughly-equal size sets, what we do is “flip the bits” (change
the signs) of the variables in one of those sets. Other than
this minor definitional change, and a small change involving
pivots, which we discuss next, BINARY SEARCH works the
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same. The code for binary search for the unate DNF case is
broken out in the figure entitled Algorithm 2.

Algorithm 2 BINARY SEARCH(Y; Z; e). For unate revisions,
finds necessary additions toY fromZ to cover a target term,
if this can be done with� e additions. We require that ini-
tially MQ(Z) = 1.

1: while MQ(Y ) == 0 ande > 0 do
2: S = Y , T = Z.
3: while jT 
 Sj > 1 do //binary search for 1 addition
4: Divide positions whereS andT disagree into ap-

proximately equal-size setsd
1

andd
2

.
5: PutMid = S with positions ind

1

replaced byT ’s
values

6: if MQ(Mid) == 0 then
7: S =Mid

8: else
9: T =Mid

10: end if
11: end while
12: Let l be the 1 position inT 
 S

13: if MQ(Z with positionl flipped) = 1 then
14: throw PivotException(Y; l; e; Z)
15: end if
16: Y = Y [ the value ofZ for positionl
17: e = e� 1

18: end while
19: if MQ(Y ) == 1 then //Y covers term
20: return Y; e
21: else //e � 0, so all edits already used
22: return “Failure”
23: end if

We found the overall algorithm for the unate case easiest
to describe by thinking of BINARY SEARCH stopping execu-
tion and throwing an exception back to the main algorithm
whenever it finds a pivot. The action of the main algorithm
is much the same as for the monotone case—it backs up and
restarts with a counterexample that is altered by turning the
pivot variable to the off position.

4.1.2 Revise Down

The procedure REVISEDOWN was used introduced in our
earlier work [14], where we called it REFINEDOWN. It is
used to delete unnecessary variables from hypothesis terms.
Given a hypothesis where each term covers a target term,
we will get only positive counterexamples. Suppose we are
given a hypothesisT

j

_T

k

such thatT
j

andT
k

cover distinct
target terms, and positive counterexamplex, which neces-
sarily covers neitherT

j

nor T
k

. Then for oneT
r

, x \ T

r

covers a target term and can therefore replaceT

r

. (If x cov-
ers both target terms, it is used to delete variables from both
hypothesis terms.) This process is repeated until EQ(h) =

“Correct” or the number of deletions performed exceeds the
error bound, or EQ(h) returns a negative counterexample.

For unate formulas with general revisions, however, the
situation is not so straightforward. Either or both initial
theory terms might require additions as well as deletions.
However, the main algorithm that calls REVISEDOWN is de-
signed so that for any two-term hypothesis passed to RE-

VISEDOWN, at least one of the two terms is full.
So REVISEDOWN may have a two-term hypothesis for a

two-term target unate DNF, but still receive a negative coun-
terexamplex to an equivalence query, because the hypothesis
term thatx satisfies is not full. Notice, however, that there
is no ambiguity about which hypothesis term to revise when
REVISEDOWN gets a negative counterexample, because the
negative counterexample can satisfy only the one term of the
hypothesis that is not full. We will discuss what should be
done with this negative counterexample in Section 4.1.3.

Algorithm 3 REVISEDOWN(T
1

; T

2

; e; p

1

; p

2

)

Edits the two-term hypothesisT
1

_T

2

, but never makes more
thane edits. Thep

i

are positive instances (or NULL) asso-
ciated with the respectiveT

i

. Terminates either in failure, or
with correct target formula. Terminates in failure if call to
BINARY SEARCH fails.
1: Puth = T

1

_ T

2

.
2: while (x = EQ(h)) 6= “Correct” do
3: if e � 0 then //Used up all allowable edits
4: return Failure
5: end if
6: if h(x) = 0 then //x is positive counterexample
7: for all termsT

i

do
8: x

0

= x\T

i

9: Turn “off” in x

0 any outside variables inT
�{

n T

i

10: if MQ(x

0

) == 1 then
11: T

i

= T

i

\ x

12: Decremente by # deletions toT
i

13: end if
14: end for
15: if no term ofh was revised byx then
16: return “Failure”
17: end if
18: else //x is a negative counterexample
19: if T

1

(x) == T

2

(x) == 1 then
20: return Failure
21: else
22: Let T

i

be unique term ofh such thatT
i

(x) = 1

23: if p
i

== NULL then
24: return Failure
25: end if
26: z = vector with inside variables ofx and outside

variables ofp
i

.
27: if MQ(z) 6= 1 then
28: return Failure
29: end if
30: Perform binary search fromx to z
31: Add all variables found toT

i

and decremente
accordingly

32: end if
33: end if
34: end while

The preceding discussion actually applies only to certain
calls of REVISEDOWN. As we will discuss soon in Sec-
tion 4.1.4, the main algorithm tries calling REVISEDOWN
with several different parameters, intending to abandon all
but one of the calls. For the calls that will be abandoned (in-
tuitively, the ones where the algorithm has made the wrong
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“guesses” about the parameters), the two-term hypothesis
given to REVISEDOWN could have neither term full. In this
case, however, it is fine for REVISEDOWN to fail. In fact,
when REVISEDOWN receives a negative counterexample, it
checks, in Line 19, to see whether that negative counterex-
ample satisfies both hypothesis terms. If so, then it must be
that neither hypothesis term is full, so REVISEDOWN termi-
nates with failure.

4.1.3 Negative counterexamples

We will sometimes have hypothesis terms that are not full.
This situation can arise both with a one-term hypothesis
in REVISEUPTOE, and as just discussed, for one of the
two terms of REVISEDOWN’s two-term hypothesis. In both
cases, the algorithm is designed so that the hypothesis term
always contains all the inside variables of the associated tar-
get term.

We keep associated with each hypothesis termT

i

a pos-
itive instancep

i

that is supposed to satisfy the target term
associated withT �

i

. The special case ofp
i

being NULL in-
dicates thatT

i

is supposed to be full, and any negative coun-
terexample toT

i

must indicate that an incorrect nondeter-
ministic choice has been made.

When we receive a negative counterexampley that sat-
isfies hypothesis termT

i

, it must be thaty has one or more
outside variables of the associated target term set to off, since
T

i

has all its inside variables. Meanwhile,p
i

, by definition,
has all those outside variables set to on. So, if we do a binary
search fromy to a vector with the same inside variables asy

and the same outside variables asp

i

, we will discover some
number of necessary additions toT

i

, at a cost ofO(log n)
queries per addition for BINARY SEARCH. (We could equally
well search from a vector with the same inside variables as
p

i

and the same outside variables asy to y.)

4.1.4 Main Algorithm: REVISEUPTOE

As before, we test whether the initial formula' = t

1

_t

2

can
be revised to the target formula, fore = 1; 2; 4; : : :. The pro-
cedure, REVISEUPTOE, begins with an equivalence query
to ;. If that is not the target formula, then we get a posi-
tive counterexample,x, which is used to create a one-term
hypothesis.

Assume for now that both MQ(x\(t
1

\ t

2

)) = 0 and
MQ(x\(t

1

\ t

2

)) = 0. We will describe how to handle the
case where that is not true a bit later.

Intuitively, we nondeterministically try both the assump-
tions thatx satisfies a target term that should be derived by
editing initial theory termt

1

(i.e., the revision distance is
minimized by editingt

1

rather thant
2

to get this target term)
and thatx satisfies a target term that should be derived by
editing initial theory termt

2

. In practice, the “try both” con-
struct tries first one and then the other alternative.

Here is how we proceed when we are assuming thatt

1

should be edited to create a hypothesis termT such that
T (x) = 1. We ask the two membership queries MQ(x\t

1

)

and MQ(x\t
1

). If both return 1, then our initial one-term
hypothesis ist

1

\ x. Intuitively, we are hoping that the re-
sponses to the membership queries indicated thatx satisfies
a target term that is contained int

1

though, as we discuss in
the proof of Lemma 8, this is not necessarily the case. We
remember for later thatt

1

is the term that we edited, and that

Algorithm 4 REVISEUPTOE('
0

(= t

1

_ t

2

); e)

Note that a branch of a “try both” fails if one of the subrou-
tines it calls failswithout being explicitly tested for failure.

1: Let x be positive instance (from EQ(FALSE))
2: try both b = 1; 2:
3: Work with x as described in text to create a one-term

hypothesish assuming thatx satisfies target term that
can be derived fromt

b

to minimize total edits
4: Let t

i

be term of'
0

thath is derived from
5: Let p

i

be positive instance associated withh
6: while (y = EQ(h)) 6= “Correct” and e > 0 do
7: if h(y) = 1 then //Negative counterexample
8: if p

i

== NULL then
9: return “Failure”

10: else //h needs more variables
11: z = vector with inside variables ofy and outside

variables ofp
i

.
12: if MQ(z) 6= 1 then
13: return Failure
14: end if
15: Perform binary search fromx to z
16: Add all variables found toh; decremente ac-

cordingly
17: end if
18: else //y is a positive counter example
19: h

0

= h; e
0

= e

20: y

0

= y\t

�{

21: if t
�{

\ y � h and then MQ(y

0

) == 1 then
22: h = h \ y

0

23: else if BINARY SEARCH(y0; y; e) returns (z; e)

(rather than “Failure”)then
24: h = h

0

_ ((t

�{

\ y) plus literals ofz in z 
 y

0

)

25: //REVISEDOWN may find target
26: if REVISEDOWN(h; e) returns “Failure”then
27: h = h

0

\ y

28: e = e

0

� jh

0

n hj

29: end if
30: else //BINARY SEARCH(y0; y; e) returns “Failure”
31: h = h

0

\ y

32: e = e

0

� jh

0

n hj

33: end if
34: end if
35: end while
36: end try both
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x is an instance that we are assuming satisfies the associated
term of the target formula. The fact that we rememberx,
instead of NULL, indicates that we could later legitimately
receive a negative counterexample satisfying this term; that
is, that this term might not be full.

If, instead, MQ(x\t
1

) = 0, then we perform a binary
search fromx\t

1

to x, and our initial one-term hypothesis
is t

1

\ x plus whatever additional variables were found by
the binary search. In this case, we should never see a nega-
tive counterexample to this term, so we make the associated
positive instance NULL. (If we do receive a negative coun-
terexample, it indicates that we are in the wrong branch of
the “try both.”) Again,t

i

is the edited initial theory term.
The final possibility is that MQ(x\t

1

) = 0, but
MQ(x\t

1

) = 1. If T �

1

(x) = 1, then it must be thatT �

1

contains some variables fromt
2

n t

1

, since MQ(x\t
1

) = 0.
Thus, we can be certain thatx0 = x\t

1

satisfies only the
other target term. So, if MQ(x0\t

2

) = 1, then we use
(t

2

\ x

0

) as our initial one-term hypothesis. If not, then we
do a binary search from(x0\t

2

) tox0 to find which variables
we need to add tot

2

\ x

0 to create our initial hypothesis. Ei-
ther way, we indicate that our hypothesis term has actually
been derived fromt

2

, and that it is full, so we should never
receive any negative counterexamples to it.

Now let us explain what we do if one or both of
MQ(x\(t

1

\ t

2

)) = 1 or MQ(x\(t

1

\ t

2

)) = 1. In this
case,t = t

1

\ t

2

plays a very similar role tot
i

above in the
case where we assumed that both these membership queries
returned 0. If both membership queries return 1, then we ini-
tialize our one-term hypothesis to bet \ x, andx\t is the
associated positive instance, and we must “try both” associ-
ations of the derivation oft \ x with t

1

andt
2

. (I.e., when
a second term is added, it should be derived from theother
initial theory term).

If exactly one of MQ(x\t) and MQ(x\t) is 1, then we
can do a binary search betweenx\t andx\t or vice versa
and derive a hypothesis term that is full. In this case the
associated positive instance is NULL, but we still have to
“try both” possibilities (t

1

andt
2

) for the derivation of the
new term.

Unlike the monotone case, once we have a one-term hy-
pothesis, we are not always sure whether subsequent positive
examples should be used to add variables to an initial the-
ory clause in order to generate a new hypothesis clause, or
to delete variables from an existing hypothesis clause. Our
algorithm is designed so that an incorrect guess will only
propagate down twice: if we make two false assumptions,
the algorithm will backtrack. The places where assumptions
are made are in with the initial counterexample, which may
be used to edit one or the other initial term, and then, given
a one-term hypothesis, whether to use a positive counterex-
ample to edit the existing term or to create a new term.

4.2 CORRECTNESS AND QUERY COMPLEXITY

We first make an observation about REVISEDOWN that fol-
lows immediately from an examination of its code.

Lemma 7 When REVISEDOWN is called with its maximum
number of edits parameter e set to d, then it makesO(d logn)
queries.

The following lemma is the heart of the correctness ar-
gument.

Lemma 8 Let '
0

= t

1

_ t

2

be an initial theory, and let
�

�

= T

�

1

_ T

�

2

be a target theory, with the T �

i

labeled so
that e = jt

1


 T

�

1

j + jt

2


 T

�

2

j � jt

1


 T

�

2

j + jt

2


 T

�

1

j.
Consider a run of REVISEUPTOE('

0

; e). If the positive in-
stance x used in Line 1 satisfies only the one target term T

�

j

,

and MQ(x\(t

1

\ t

2

)) = MQ(x\(t

1

\ t

2

)) = 0, then the
branch of the “Try both” where i = j finds the target theory
using at most O(e2 logn) queries.

Proof. First, we point out that the pivot exception in binary
search will not occur becausex covers only one of the two
target terms.

We proceed by cases.
Case I: Both MQ(x\t

i

) = 1 and MQ(x\t
i

) = 1.
The initial one-term hypothesis created in Line 2 of RE-

VISEUPTOE is t
i

\ x. Call this term of the hypothesisT .
Notice thatT cannot coverT �

�{

. This is true ifT �

�{

contains
any variables not int

i

. Even if all T �

�{

’s variables are int
i

,
however,T still cannot coverT �

�{

, since the hypothesis of the
lemma is thatx does not satisfyT �

�{

, andT = t

i

\ x.
i. T �

i

� t

i

.
SinceT �

i

(x) = 1, it must be thatT coversT �

i

. Thus,
any counterexample to EQ(h) whereh includesT must be
positive, or it contradicts thatT �

i

� T . Note that so far we
have use only a constant number of queries.

For each subsequent positive counterexampley, we first
assume thaty does not satisfyT �

i

, so y should be used to
create a second hypothesis term derived fromt

�{

. Notice that
y

0

= y\t

�{

also cannot satisfyT �

i

, sinceT �

i

has no outside
variables. So, if MQ(y0) = 1, then we can initialize the
second hypothesis term tot

�{

\ y, and if not we can do one
binary search fromy0 to y to decide which additional outside
variables should be added tot

�{

\ y. Thus initializing the
second term requiresO(e logn) queries.

One special case can arise. If MQ(y0) = 1 andt
�{

\y � T

(and, in fact, sincey is a counterexample, it must be that
t

�{

\ y � T ), then intuitively we certainly do not want to add
t

�{

\y as a second hypothesis term, because then the first term
would be redundant. Formally, we can argue as follows. If
bothy andy0 = y\t

�{

satisfyT �

�{

, thenT �

�{

has all its variables
in t

�{

, and indeed int
�{

\ y. However, sincet
�{

\ y � T , that
would mean thatT coversT �

�{

, which is false. So, at least one
of y or y0 satisfiesT �

i

. In this case (checked for in Lines 18–
21 of REVISEUPTOE), we can safely use the inside variables
of y (which are the same as the inside variables ofy

0) to make
deletions fromT .

When instead we are trying to usey to start a second hy-
pothesis term, we make one binary search, usingO(e logn)

membership queries, to initialize a second term of our hy-
pothesis. After that, we are in the subroutine REVISEDOWN,
which performs only deletions to our two-term hypothesis,
using only a constant number of queries per deletion. Thus,
if y actually satisfiesT �

�{

, we obtain the target using at most
O(e) equivalence andO(e logn) membership queries. Ify
doesnot satisfyT �

�{

, we backtrack afterO(e logn) queries,
and usey to perform at least one needed deletion from term
T . Thus the total number of queries is at mostO(e) equiva-
lence andO(e logn) membership queries per deletion.
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ii. T �

i

6� t

i

.
Notice that in this caseT is not full. If we receive a

negative counterexample to EQ(T ), then we can use it to
makeT full, at a cost ofO(e logn) queries. After this, we
are in the same situation as Case I.i.

The other possibility is that we receive a positive coun-
terexample. We now digress a bit to describe some proper-
ties that our one-term hypothesis must have, and then return
to describing how the positive counterexample is handled.

Let x be the positive instance that was used to createT .
We claim that the following must hold:

1. T includes all inside variables ofT �

i

, but no outside
variables.

2. T �

i

contains at least one outside variable, and the sets of
outside variables ofT �

1

andT �

2

are disjoint.

Recall that MQ(x\t
i

) = MQ(x\t

i

) = 1, but by as-
sumption,t

i

does not coverT �

i

. Now also by assumption,
T

�

i

(x) = 1, so it must be thatx\t
i

satisfiesT �

i

. SinceT �

i

contains variables not int
i

andx andx\t
i

differ on those
variables,x\t

i

must satisfyT �

�{

. Sincex\t
i

andx\t
i

satisfy
two different target terms, and both those instances have all
variables int

�{

n t

i

set to off, neither target term can have any
variables fromt

�{

n t

i

. Now Item 1 follows becauseT was
initialized to t

i

\ x, and allT �

i

’s inside variables are from
t

i

. Next,T �

i

must contain outside variables, because other-
wise t

i

would coverT �

i

. Target termT �

�{

cannot contain any
of T �

i

’s outside variables, because those variables are off in
x\t

i

, which satisfiesT �

�{

. This concludes the argument that
Item 2 holds.

Now consider a positive counterexampley to EQ(T ).
there are three possibilities. One is that we execute Lines 19–
22 of REVISEUPTOE becauset

�{

\ y � T and MQ(y0) = 1,
wherey0 = y\t

�{

. In this case, we can argue exactly as we
did for this situation in Case I.i that at least one ofy or y0

must satisfyT �

i

, and it is fine to editT to y \ T .
The second possibility is thaty covers all the inside vari-

ables ofT �

i

. In this case, editingT to becomeT \ y is per-
forming necessary deletions. Before doing that we will have
called REVISEDOWN, but it must always terminate within
O(e logn) queries, so that can do no harm.

Otherwise,y is missing some inside variables ofT �

i

, so
so isy0 = y\t

�{

. Thus a binary search fromy0 to y is guar-
anteed to find us a second hypothesis term that is full with
respect toT �

�{

, so REVISEDOWN will return the target for-
mula inO(e logn) queries.

Case II: MQ(x\t

i

) = 0.
This implies thatT �

i

6� t

i

. In this case, we perform a bi-
nary search fromx\t

i

up tox. That binary search will find
the necessary additions tot

i

\ x usingO(e logn) member-
ship queries, and after that the analysis is just as in Case 1.
The total asymptotic query complexity is the same.

Case III:
MQ(x\t

i

) = 1, and MQ(x\t
i

) = 0.
Notice that in this caseT �

i

must contain variables not in
t

i

, specifically some variables fromt
�{

� t

i

. (If the necessary
additions tox\t were all outside oft

�{

then MQ(x\t
i

) would
be 1.) Furthermore, since those variables areoff in x\t

i

, it
must be thatx\t

i

satisfiesT �

�{

.

Sox\t
i

is a positive example that definitely satisfies term
T

�

2

and not termT �

1

. Now one of the previous cases applies,
with the roles ofi and�{ switched andx\t

i

replacingx. Thus,
this is equivalent to Case I in the second branch of the “Try
both,” and the complexity analysis is subsumed by that of
Case I.

Remark: The only place we used the restriction onx that
MQ(x\(t

1

\ t

2

)) = MQ(x\(t

1

\ t

2

)) = 0, was to restrict
the number of cases in the proof. The cases correspond to
the different ways in which the initial one-term hypothesisis
created.

The arguments for the case where we instead work with
t

1

\ t

2

to create the initial one-term hypothesis are broadly
similar, and will be included in the full paper.

Theorem 9 We can revise two term unate DNF in
O(e

2

logn) queries, where e is the revision distance between
the initial and target theories.

Proof sketch. We make repeated calls to REVISEUPTOE
with the error parameter set to1; 2; 4; 8; : : : until REVISE-
UPTOE returns success. We claim that this happens by the
time the error parameter reaches or first surpassese.

Consider first the case where the initial positive example
x covers only one term and the other condition of Lemma 8
is met. Lemma 8 guarantees that the branch of the “Try both”
that has the “right” value ofi halts afterO(e2 logn) queries
with the target theory. Furthermore, the “wrong” branch of
the “Try both” also keeps track of how many revisions it has
made as it goes along, so it must halt after making at most
O(e logn) queries as well.

The case where the conditions of Lemma 8 do not hold
because there is a target term all of whose inside variables
are in the intersection of the two initial theory terms has a
broadly similar argument.

Consider next the case where the initial positive exam-
ple covers both terms, and at least one branch of the “Try
both” catches a pivot exception thrown by binary search.
The branch that throws the exception can have made at most
O(e

2

logn) queries before throwing the exception. After the
exception we restart the program with a new counterexample
that is guaranteed to satisfy the conditions of Lemma 8.

Finally, we have the case where the initial positive ex-
amplex satisfies both terms of the target, and neither branch
of the “Try both” finds a pivot. This means that all of the
additions done are necessary to both possible revisions (the
current term toT �

i

or to T �

�{

). As in the discussion for the
monotone case, if both initial terms are revised, in their par-
allel branches, to the same target term, then one of those
revisions is the correct one. If they are revised to different
target terms, then that revision is at least as efficient as revis-
ing them to the opposite target terms.

5 REVISING READ-ONCE FORMULAS

In this section we outline the improved deletion-only revi-
sion algorithm for read-once formulas.

An 
(e log(n=e)) lower bound to the number of queries
is proved in [15]. It is also shown in [15] that using only one
type of query, one needs a number of queries that is linear in
n.
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Theorem 10 Every n-variable read-once formula ' has a
revision algorithm that uses O(e logn) queries, where e is
the revision distance between ' and the target concept.

Proof outline. Let us review a bit of terminology from [14].
We assumew.l.o.g. that' is monotone. If'0 is a subfor-
mula of', then every truth assignmentx can be written as
(x

1

;x

2

), called the'0-partition of x. Herex
1

contains all
the variables in'0, andx

2

contains all the variables not in
'

0.
Let'0 be a subformula of' and letP be the path leading

from the root of' to the root of'0 in the binary tree repre-
senting'. Then, using the commutativity of AND and OR,
' can be written as

((� � � ('

0

Æ

r

'

r

) Æ

r�1

� � � Æ

3

'

3

) Æ

2

'

2

) Æ

1

'

1

; (1)

where'
1

; : : : ; '

r

are the subformulas corresponding to the
siblings of the nodes ofP , andÆ

1

; : : : ; Æ

r

are either̂ or _.
Let the sets of variables occurring in'

i

beX
i

, and the set of
variables occurring in'0 beY . These sets form a partition
of fx

1

; : : : ; x

n

g. Now let� be the partial truth assignment
that assigns 1 (resp., 0) to every variable inX

i

if Æ
i

is AND
(resp., OR), for everyi = 1; : : : ; r. Then� is called the
partial truth assignment sensitizing '0.

Also, given a substitution�, let '� be the formula ob-
tained by replacing each variable in' by the corresponding
constant from�. A subformula isconstant if it computes
a constant function. Maximal constant subformulas must be
pairwise disjoint. Two substitutions�

1

and�
2

areequivalent
if '�

1

and'�
2

compute the same Boolean function. Then it
holds that substitutions�

1

and�
2

are equivalent if and only
if their sets of maximal constant subformulas are identical.

The learning algorithm is based on the recursive proce-
dure FINDCONSTANT of Figure 1. This procedure differs
from the corresponding procedure in [14] at one point only.
The procedure FINDFORMULA is replaced by the procedure
FINDNEWFORM, described below. FINDCONSTANT takes
a formula' and a counterexamplex and returns a substitu-
tion �, which fixes a subformula to a constant, such that
this subformula must compute constant in any representa-
tion of the target concept. Furthermore, this subformula is
a maximal constant subformula in any representation of the
target concept.

In the previous version of FINDCONSTANT, at each it-
eration, the current formula was split by finding an approx-
imately half-size subformula of', i.e., a subformula con-
taining between 1/3 and 2/3 of the original variables (which
always exists). The algorithm was recursive, so there could
be a total ofO(log n) levels before obtaining a constant-size
subformula. For each iteration, there were three cases. In
one, we usedO(log n) queries and did not need to recurse. In
another, we used onlyO(1) queries to recurse. These cases
are unchanged. In the third case, we needed to use a proce-
dure called FINDFORMULA that could use�(logn) queries.
This is where theO(log2 n) factor in the query complexity
comes from.

The modified version of FINDCONSTANT works as fol-
lows. It either succeeds in finding a subformula (which may
be' itself) that is a maximal constant subformula in any rep-
resentation of the targetC, and the value of the constant, or
it reduces' to a subformula that evaluatesx differently in'

and in any representation ofC. The number of queries used
in the first case is logarithmic in the number of variables of
'.

In the second case, we usek queries for somek and we
obtain a subformula such that the number of its variables
decreases by a factorO(1=2k). The procedure FINDCON-
STANT then continues recursively. This guarantees that after
O(log n) membership queries the procedure finds a subfor-
mula that is a maximal constant subformula in any represen-
tation ofC, and the value of the constant. One can then find
a substitution with a minimal number of variables that forces
the given constant value of the subformula by a standard re-
cursive computation that does not involve making queries.

Let us consider the version of FINDCONSTANT in Fig-
ure 1. At the bottom of the recursion no queries have to be
asked: ifx is a counterexample to a formula consisting of a
single variable, then the revision must be fixing this variable
to the constant different fromx.

If the input formula has more than one variable, then
FINDCONSTANT starts by making sure that MQ(0) = 0 and
MQ(1) = 1. Otherwise, the whole subformula is identically
true or false. Now we pick an approximately half-size sub-
formula'0 of '. Then FINDCONSTANT asks the member-
ship queries MQ(0; �) and MQ(1; �), where� is the partial
truth assignment sensitizing'0. Depending on the outcome
of these queries, we distinguish two cases.

Case I: MQ(0; �) = MQ(1; �) =  for  = 0 or 1.
This case remains the same as in [14], and so its discus-

sion is omitted.
Case II: otherwise, it must be the case that MQ(0; �) =

0 and MQ(1; �) = 1. Then for every truth assignmenty to
the variables of'0 it holds that

MQ(y; �) =  

0

(y); (2)

where 0 is the subformula corresponding to'0 in any repre-
sentation of the target concept. Now we start considering the
counterexamplex, which we write as(x

1

;x

2

), correspond-
ing to its'0-partition. By Equation 2, we can compare the
known value of'0(x

1

) to  0

(x

1

) by asking the membership
query MQ(x

1

; �). There are two possibilities, and only one
of them is different from [14].

Case II.1: MQ(x

1

; �) =  

0

(x

1

) 6= '

0

(x

1

). Thenx
1

is a counterexample to the hypothesis'0 for the target con-
cept 0. Thus we can continue recursively, to find a con-
stant substitution in a problem which has at most two-thirds
of the original variables. Note that by Equation 2 we can
use theoriginal membership queries to simulate member-
ship queries to the new target concept.

Case II.2: MQ(x

1

; �) =  

0

(x

1

) = '

0

(x

1

) = d.
It is in this case that we have to modify the original algo-

rithm in [14].
Let us write ' as in Equation 1. Putx

2

=

(x

2;1

; : : : ;x

2;r

), wherex
2;i

corresponds to the variables
in X

i

. Let  
i

be the subformula corresponding to'
i

in
some representation of the target. Lety

i

(resp.,z
i

) be
the value computed atÆ

i

in ' (resp., ) on input x, for
i = 1; : : : ; r, and lety

r+1

= z

r+1

= d. Then by def-
inition y

i

= y

i+1

Æ

i

'

i

(x

2;i

) and z
i

= z

i+1

Æ

i

 

i

(x

2;i

)

for i = 1; : : : ; r. Also, y
1

= '(x) 6=  (x) = z

1

. Let
�

i

be the partial truth assignment that assignsx

2;j

to X

j
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for j = i; : : : ; r and is otherwise identical to�. Then
z

i

= MQ(x

1

; �

i

).
As noted,y

r+1

= z

r+1

andy
1

6= z

1

. Just as the proce-
dure FINDFORMULA, the procedure FINDNEWFORM finds
an i (1 � i � r) such thaty

i+1

= z

i+1

andy
i

6= z

i

, and
we returni. For thisi '(x

2;i

) 6=  (x
2;i

). Thus we can con-
tinue by a recursive call on'

i

using the counterexamplex
2;i

.
For a giveni, one can evaluatey

i

without any membership
queries from', and one can use the remark at the end of the
previous paragraph to evaluatez

i

with a single membership
query.

FINDFORMNEW finds the requiredi by performing a
weighted binary search. Letj'

j

j denote the number of vari-
ables in the subformula'

j

. Let the weightsw
j

be defined by
w

j

= j'

j�1

j+ j'

j

j for j = 2; : : : ; r. The binary search pro-
ceeds by updating an intervalI = [a; b℄. Initially a = 2 and
b = r. Let s =

P

j2I

w

j

. Note that for the initial value of

s, s � (4=3)n. Query the valuè such that
P

`

j=a

w

j

� s=2

and
P

`�1

j=a

w

j

< s=2. If y
`

6= z

`

(resp.,y
`

= z

`

) then update
I to [` + 1; b℄ (resp., to[a; ` � 1℄). If I is nonempty, then
updates accordingly, and continue the search. Otherwise,
the search is over, and we returni = ` (resp.,i = ` � 1) if
y

`

6= z

`

(resp.,y
`

= z

`

). In both casess � w

`

� j'

i

j.
If the search is completed afterk queries then the last

value ofs is at most1=2k�1 times its original value. Hence
for the valuei returnedj'

i

j �

4

3�2

k�1

n. The bound above
implies that the recursive call is made on a formula of size
O(n=2

k

).
We also note that in order to simulate the membership

queries in the recursive call by membership queries to the
original target, one uses the following fact. Let

i

be the
partial truth assignment that assigns 1 (resp., 0) toY and to
all X

j

with j > i if Æ
i

is AND (resp., OR) and is identical to
� onX

j

for 1 � j < i. Then for every truth assignmentw
toX

i

, it holds that

MQ(w; 

i

) =  

i

(w):

We claim that FINDCONSTANT usesO(log n) member-
ship queries. There are three cases to consider. The proce-
dure GROWFORMULA usesO(log n) queries and does not
make any recursive calls. If FINDCONSTANT gets into the
else branch and it continues by looking at'0 then it uses
a constant number of queries, and continues with a recur-
sive call to an input that is at most two-thirds of the original
size. Finally, if it uses the procedure FINDFORMNEW, then
it makesk membership queries for somek, and it continues
with a recursive call to an input that is at mostO(1=2

k

) times
the original size. Hence the upper bound follows by induc-
tion. The rest of the description and analysis of the algorithm
is again identical to [14] and so it is omitted.
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FINDCONSTANT(';x)
if ' has one variable

return substitution� fixing it to constant1� x

if MQ(0) == 1 or MQ(1) == 0

return substitution� fixing ' to the appropriate constant
'

0

= an approximately half-size formula of'
� = the partial truth assignment sensitizing'0

if (MQ(0; �) == MQ(1; �) == )

then return GROWFORMULA('; '0; )
else

(x

1

;x

2

) = the'0-partition ofx
if MQ(x

1

; �) 6= '

0

(x

1

)

then FINDCONSTANT('(�; �);x
1

) // look in'0

else
i = FINDNEWFORM('; '0 ;x)
FINDCONSTANT('

i

;x

2;i

) // look in'
i

Figure 1: The procedure FINDCONSTANT.


