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Abstract

Good-Turing adjustments of word frequencies are
an important tool in natural language modeling. In
particular, for any sample of words, there is a set
of words not occuring in that sample. The total
probability mass of the words not in the sample
is the so-called missing mass. Good showed that
the fraction of the sample consisting of words that
occur only once in the sample is a nearly unbiased
estimate of the missing mass. Here, we give a PAC-
style high-probability confidence interval for the
actual missing mass. More generally,for 0, we
give a confidence interval for the true probability
mass of the set of words occurigtimes in the
sample.

INTRODUCTION

our knowledge, the convergence rate of this estimator has
never been formally analyzed.

According to Good [5], the Good-Turing estimators were
developed by Alan Turing during World War 1l while break-
ing Enigma codes. The Enigma was an encryption device
used by the German navy. The Enigma used, as part of its
encryption key, a three letter sequence. These three letter
sequences were selected from a book containing all such se-
quences in a random order. However, a person opening the
book and selecting an entry was likely to select a previously
used entry, say the entry on the top of a page where the bind-
ing of the book was creased. Given a sample of previously
used entries, Turing wanted to estimate the likelihood that
the current unknown entry was one that had been previously
used, and further, to estimate the probability distribution over
the previously used entries. This lead to the development of
the estimators of the missing mass and estimates of the true
probability mass of the set of items occurikdimes in the
sample. Good worked with Turing during the war and, with
Turing’s permission, published the analysis of the bias of

Since the publication of the Good-Turing estimators in these estimators in 1953. As mentioned above, these es-
1953 [4], these estimators have been used extensively intimators have now become standard in a variety of natural
language modeling applications [2, 3, 6]. In spite of the language processing applications.
extensive use of Good-Turing estimators, little theoretical In this paper, we analyze the convergence rate of the
work has been done on these estimators since the originalGood-Turing estimators. L€l be the fraction of the sample
theorems showing that they have negligible bias. In this pa- consisting of words that occur only once in the sample and
per, we briefly review the Good-Turing estimators and then let M, be the actual missing mass, i.e., the total probability
prove new convergence rates, i.e., we give PAC-style high- mass of the items not occurring in the sample. We prove that
probability confidence intervals for the true values of the with probability at least 1- § over the choice of the sample,
estimated quantities. we have thaf\, is no larger than

Perhaps the most significant Good-Turing estimator is the
estimate of the missing mass. We assume that there is some In(1/9)
unknown underlying distribution on some unknown set of Go+O ( m >
objects, e.g., an unknown frequency for each word in English.
We assume that a sample is constructed by drawing objectsyherem is the size of the sample. Thisiis true independent of
independently according to this unknown distribution. If the the underlying distribution. We also give a somewhat weaker

number of objects with nonzero probability is infinite then for PAC lower bound on\/; and PAC bounds on the true total
any finite sample there will be objects of nonzero probability probability mass of the set of words occurribgimes in the

that do not occur in the sample. It is well known that in sample.

any sample of English text there will be English words not

occurring in the sample. The missing mass of a sample is2  THE GOOD-TURING ESTIMATORS

the total probability mass of the objects not occurring in the

sample. The Good-Turing estimate of the missing mass is We assume an unknown probability distributiBon a count-

the fraction of the sample consisting of objects that occur ablevocabulary V' and we denote the probability of wotd
exactly once in the sample. The fundamental Good-Turing by P,,. In practice, this is often taken to be the words of
result is that this estimate has negligible bias. However, to some natural language, such as English, although of course



are results are applicable when the vocabulary is any count-
able universe of objects. We consider a sansptd m words
drawn independently fron¥” according to distributiornP.
Throughout the paper, we will writ¢’ S ®[S] to mean that
with probability at least 1 ¢ over the choice of the sample
we have thatp[S] holds.

For a samples of m words and for any word € V' we
definec(w) to be the number of times word occurs in the
sampleS. For any integek > 0, we defineSj, to be the set
of wordsw € V such thate(w) = k. Note thatS is the
set of words inV’ not occuring inS. We define);, to be
probability of drawing a word in the sé,:

M, = Z P,.

weESk

Note thatM; depends on the sample, i.e., it is a random
variable.

The Good-Turing estimators estimate the quantitigs
These quantities are conceptually useful in constructing lan-
guage models. The quantity/y is the so-callednissing
mass, 1.e., the total probability mass of words not occuring
in the sample. Intuitively, a language model should reserve
some probability mass for words not in the sample since it is
unlikely (or even impossible if the vocabulary is larger than
the sample) that all the words in a large vocabulary will be
seen in the sample. Similarly, fér> 1 the quantitiyMy, is
useful in estimating the true probability of a word that occurs
k times in the sample. Specifically, far € Sy, if we know
My, then a good estimate @f,, would beM},/|S|. Fork
small, we usually have that/;, is significantly smaller than
its “natural” estimate;| S| /m. For example, if all words in
a large sample occur only once, thgnis the entire sample
but M; is almost certainly near zero.

The Good-Turing estimate a@ff;,, which we denoté&7y,
can be defined as follows:

k+1
G = m—k
Good [4] showed that fok small andm large this estimate
has small bias, that is, the expectatiorGf is very close to

the expectation af/;,. We prove a variant of Good'’s theorem
here:

| Skl

Theorem 1 For k < m we have

kE+1

E[Mi] = E[Gk] - mE [Mpy1] -

Proof: Note that ] can be written as follows:

E[M:] = > PuPrwe S
weV
- ¥ (7;) Py (1 p,)mk
weVvV
= Y Pr{w e S (Z) (1—P,)
weV (k+1)

The Good-turing estimate is often defined to*8&| Sy 11|. For
k much smaller tham. this is essentially the same as the definition
used here. However, the estimat&|S,1| has slighly smaller

bias and is theoretically easier to work with.

R+ ]I;PI'[’U) € Sk+1] (1-Py)

>

m —
weV
k+1
= m Z Pr [w S Sk;+1]
weV
k+1
—m Z Pl’[w € Sk_l,_]_] Pw
weV
k+1 kE+1
= ElISknl] = ——E[My4]
k+1

Theorem 1 immediately implies that formuch smaller than
m we have thaiGy is a nearly unbiased estimate bf.
More specifically, sincé/;;1 € [0, 1] we have the following
corollary of Theorem 1.

Corollary 2 For k < m we have
k+1

|E[My] - E[Gk]| <

m—
Note in particular thafE [Go] — E[Mo] | < 1/m.

It is interesting to note that it is possible to “unwind” the
equationin Theorem 1. For example, we can@gse- G1/m

as an improved estimate 6f,. By observing thaf\/, < 1

we get that the bias of this improved estimate is at most
2/(m(m —1)). More generally, the bias of an estimator
based on using the equation in Theorerd fimes will be
O(1/m?). However, it seems that the variance of these
estimators is large compared tgri, so reducing the bias
belowO(1/m) is not a significant improvement.

3 CONVERGENCE OF THE
GOOD-TURING ESTIMATORS
The first main result of this paper bounds the rate at which

the Good-Turing estimators converge. More specifically, we
have the following:

Theorem 3
Vo >0 VS |Gy — M| <
3
k-|-2+ 2|n(5) N
m—k m
kE+1 3m 3m
m+k+ 2k|n<7)+2ln<7)]

Note that for fixedk and J, we have that the bound on
|Gr — M| converges to zero as: increases at the rate
O((Inm)/+/m) independent of the size or distribution of
the underlying vocabulary. Furthermore, the width of the
confidence interval has only logarithmic dependence on the
confidence parametér For k small compared to [(8m/4),
the bound is approximately
oin (%), /200,

m



For k large compared to [i3m/0), but still small compared

to m, the bound is approximately

21n(3)

2k

The bound is vacuous fér > +/m.

The basic idea behind the proofis to introduce a threshold

O such that, with high confidence, all wordswith P, > ©
occur more thark times and hence do not influendé;,.
Given an upper bound oR,, for words influencing\/;, we

have that a single (plausible) change in the sample can chang
M;j, by at most B. Given a bound on the influence of a
single sample element o/, (and alsoGy), we can apply
McDiarmid’s theorem which gives a convergence rate for any

completing the proof. ]
We now defined(p, §) to be the bound in Lemma 4:

2In(1/0) , 2In(1/9)

O(p,0) =p+

We also definelZ? as follows:

M} Z P,.

wESy: Pyuy<O(k/m,6/m)

ote that)M} consists of that fragment af/;, due to “low
requency” words. The frequency thresh@dk/m, §/m)
is selected so thdw;j is essentially the same ad;; with

high confidence)M = M, and their expectations differ by

function of the sample where single changes in the sampleat most ¥m.

have limited influence.
To establish an appropriate value f®rwe use the fol-
lowing lemma:

Lemma 4 If a biased coin has probability p of being heads,
and p is the fraction of times the coin comes up heads in a
sample S of m independent tosses, then we can bound p in
terms of p as follows.

25In(1/6) , 2In(1/9)

m m

V6 >0 VS p<p+

Lemma 5 For m > 1we have that
V6 >0 VS M} = M.
Proof: First we use “union bound quantification” which
states that ifV is a finite set such that
Ve W V§>0 VS dlz, S, d]

then
V6 >0 V'S Yz e W @[z, S, §/|W]].

This is simply a formulation of the union bound. Applying

Proof: The relative Chernoff bound [1] states the following Union bound quantification to Lemma 4 withi being the set

fory > 0:
Pr [ﬁ <(1- 'y)p] < e~PmY’/2,

Setting this probability equal td and solving fory we can
rephrase this bound as follows:

2piIn(

Sl

VS p—p< )

(1)

of wordsw such thatP,, > % we get that

V6 >0 VIS Yu: Py > —, Pw§e<M7 i)_
m m m

(2)
By high confidence implication, it now suffices to show that
the body of (2) impliesM{ = M;,. Assume the body of
(2). To showM? = M;, we must show that for any word
w with P, > ©(k/m, 6/m) we havec(w) > k. Letw

We use “high confidence implication” which states that if P& any such word. One can check thatfor> 1 we have

VoS ®[S] and®[S] impliesW[S], thenv’ S W[S]. In partic-

O(k/m, 6/m) > 1/m. HenceP, > 1/m and so by the

ular, consider any sample satisfying the body of Eq. (1). The body of (2) we haveP,, < ©(c(w)/m, J/m). But this

body of Eq. (1) implies that
m(p — p)* < 2pIn(1/9),
that is,
mp? — (2mp + 2In(1/8))p +mp® < 0,
which implies thap is at most

(2mp + 2In(1/8)) + /(2mp + 2In(1/5))? — 4m?p2
2m

PRI \/Smﬁ In(1/6) + 41n(1/5)

m 4m?

54 A0 \/Zﬁln(l/é) L In*(1/9)

m m m2

54 20 | [25In(1/6)
m m

IN

implies©(k/m, 6/m) < P, < O(c(w)/m, d/m) which
impliesc(w) > k. [ |

Lemma 6

V6 €[0,1], |[E[Mg]-E[M]]|<

SRR

Proof: First note the following:

E[My] —E[M]] = >
w: Py, >0(k/m, 6/m)

P,Prlw € Si].

It now suffices to show that foP,, > ©(k/m, d/m) we
have Pfw € Si] < 1/m. Lemma 4 can be rephrased as

o (2, £) <n] <

For P, > ©(k/m, ¢ /m) this implies

[o(2 1) o(3 2)] <2



and therefore

1)

Prlc(w) < k] < -

So we have Fw € Si] < Prc(w) <
[ ]

k] <6/m < 1/m.

Now that we have established that) behaves much like

Lemma 8
V6 >0 V'S |(Gy— M) —E[Gr — M]]| <

(£5ve(L. 1)) faum (2)

Proof: We apply Eq. (3) with” being the vocabulary of pos-

M., we use the fact that a single change in the sample cansjpje words and\; being theith word in the sample. We take

not have much influence on the value/df. The following

f(Xy,...,X,) tobeG) — M. Note that when a word is

theorem of McDiarmid [7] states that any function of the repjaced inthe sample, one word increases its count while an-
sample for which a single change in the sample has limited other word decreases its count. This implies that a single re-

effect must converge to its expectation as the sample getsyjacement can changs;,| by at most 2. So a single replace-

large.

Theorem 7 (McDiarmid) Ler X1, ..., X,, be independent
random variables taking values in a set V and let f : V'™ —

R be such that
!

Sup|f(a:1, s ,CL’m) - f(wla sy L1, Ly Tigdy - - ,CL’m)|
is at most c; where the supremum is taken overall 1, . . . , X,
xf € V. Then with probability at least 1 — §

1y§m 2
In(5) > 21 ¢

F(Xa,...

and with probability at least 1 — §

, Xm) S E[f(Xy,..., Xim)] +

2 )

In(}) o7, ¢

F(Xa,... >

7Xm) > E[f(Xla- . 7Xm)] -
A natural special case is; € [0,1] and f(z1, ...,x,) =
LS ;. Inthis caseg; = 1/m and McDiarmid's theo-
rem reduces to the Heoffding inequalities.

The “union bound conjunction principle” states that, for
any positive numbergandk, if
)
J

V6 >0 VS W [S, %]

5 7))

This can be rephrased equivalently to say that if
Vo >0 V25 @[S, 4]

V6 >0 VS @ {S,

and

then

V6 >0 V'S (CD[S, L}/\w
k+7

and
Vo >0 V*S WS, 4]
then
Ve >0 VUtheg (@[S, 3] A WS, 4))
which clearly follows from the union bound.

ment can chang@}, by at most 2k + 1)/(m — k). Asingle
replacement can changé, by at most B(k/m, v/m). So
a single change in the sample can chagge— M, by at

most N
z<_+1 +e<£, 1))
m—k m’ m
Eq. (3) then implies the lemma. ]

Proof of Theorem 3: We apply union bound conjunction to
lemmas 5 and 8 with/3 inserted fory in Lemma 8. When
then get that the following holds with probability at least
1-6:

|G — M|
= |n- M)
< [etGa-e[m|

kE+1
+<L+e
m—k

(e 3)) 2o (3)
< [EIGH - Bl + [E [37%] - EDM|

k+1 k0 3

k+1 1

IN

m—k m

k+1 ) 3
< B2 (B oL 2V fomin (2
— m’ 3m 1)

- m-k m—k
3
_ k-|-2+ 2In(5) y
m—k m
kE+1 / 3m 3m
m+k+ 2k|n<7>+2ln<7>l

This inequality is trivially true whem: = 1 and Theorem 3

Applying union bound conjunction to the two conclusions follows. ]

in McDiarmid’s theorem gives that, with probability at least
1-9,

In(%) D

|f(X1,... 5
(3)

LX) —E[f(X1, ..., Xa])| <

Using Eq. (3) we can prove the following:

4 A TIGHTER UPPER BOUND ON THE
MISSING MASS
Inthe case of the missing makh, it is possible to give a sig-

nificantly tighter upper bound than that given in Theorem 3,
namely, the following:



In(3
Theorem 9 V6 > 0 V°S Moy < Go+(2vV2+V/3) &

Note that this bound only applies to one of the tails. It remains
open whether a similar bound holds on the other tail as well.
To prove this theorem, we dividd into a high frequency
componentM and a low frequency component; as

follows:

M = > P,.
w:Py>1/m, c(w)=0
My = > P,.

w:Py <1/m, c(w)=0

We prove the following two lemmas seperately:

3In(}

Lemma 10 V5 > 0 V°S M <E[Mg] + &)
m

s B B 2In(3)

Lemma 11 V6 >0 V°S My <E[Mj] + .
m

Lemma 11 follows from an application of McDiarmid’s the-

orem and the observation that a single change in the sample

can changé\/; by at most Zm. Lemma 10 is more in-
volved and is proved at the end of this section. Note that
Mo = My + Mg and hence, by union bound conjunction,
Lemmas 10 and 11 together imply that

V6 >0 V'S Moy < E[Mo]+(\/§+\/§)\/@. (4)

We also need the following two lemmas where the first fol-
lows from Theorem 1 and the second follows from an appli-
cation of McDiarmid’s theorem t6/q:

Lemma 12 E[M] < E[Gq].

5 2In(3)
Lemma 13 V6 > 0 V°S E[Go] < Go + .
m

Theorem 9 now follows by applying union bound conjunc-
tion to Eq. (4) and Lemma 13 so that the bodies of Eq. (4),
Lemma 12 and Lemma 13 all hold simultaneously.

It now remains only to prove Lemma 10. The proof is

based on Chernoff's method. The first step is to prove the

following:

Lemma 14 For \ > O and € > 0 we have
Pr{Mg > E[Mf] +¢] <efNAe

where

F(/\) = Z (ln(Qwe)\Pw + (1 —Qu)) — )‘Pwa)
w: Py >1/m

and @, = (1 — P,)™ is the probability that word w does

not occur in the sample.

Proof: In Chernoff's method, we bound the tail probability
using Markov’s inequality:

PriMg > E[M] + ¢
Prlexp(A(Mg" —E[M{] —€) > 1]
E[exp(A(Mg —E[Mg] —¢))]

MEMF ] £ [€AM0+:| '

<
(5)

LetB ={w €V : P, > 1/m}. For each wordv € B,
we introduce a random variahlé,, which is 1 ifw doesnor
occur in the sample and 0 otherwise. We can then vifge
as
My = Z XowPy.
weB
Clearly, E[ X ,,] = Q. SO

E[M{] = Z QuwPo.

weB
Now
- exp(AZPwa>
weB
— H AP X
weB
= I @+ (M -1) xy) @)
weB

where the last equality uses the fact that € {0, 1}. Multi-
plying out the product, we can write Eq. (7) as a polynomial:

IT @+ -1)x,)=> ca [[ X (8
weB ACB  w€A

for some coefficients4. Furthermore, because?,, > 0,
all of the coefficientg 4 are nonnegative.

Note that[[,,c 4 Xw is 1 if none of the wordsv in A
occur in the samplé and is 0 otherwise. Thus,

o] - (oxe)

(1)
fo-

weA

Il

IA

©)

The inequality here can be proved by induction dhusing
the factthat - p — ¢ < (1 — p)(1 — q) forp,q > 0. Thus,
combining Egs. (7), (8) and (9) gives

0] - g ee((I )]
< IL;BCAuEQw
=YL @ -1)Qu).

weB



Combined with Egs. (5) and (6) this gives
Pr(Mg > E[M{] + €]

< exp (—)\e - A Z Pwa> .

weB
IT @+ (e -1) Qu)
wEB

R O

Next we prove the following bound on the functidii\):

Lemma 15 For A < m/2

/\2

Proof: First, note tha#'(0) = 0. Now letF’(\) denote the
first derivative ofF’, i.e.,dF'/d)\ evaluated ah. Then

QuPuw
Z - Qwa
_ AP,
w: Py>1/m (1-Qu)e +Qu
Note thatF’(0) = 0. Now letting F"(\) denote the second
derivative of F' we get that
201 _ —AP,
F"()\) — Z prw(l Qw)e 5
:Py>1/m [(1 - Qw)ei)\Pw + Qw]
Z QwPE;(l B Qw)ei)\Pw
(1= Qu)erre]?
QuP?
(1 Qu)e= P
QwaeAPw

b o0)

F'(\) =

g

IN

g

:Py>1/m

P>

P Py>1/m

S

IA
ANg
&9
=
|
QO
g

ST R = Tey

w: Py,>1/m

where the last two inequalities use the inequality = (1 —
P,)™ < e~™Pv which is at most le for P, > 1/m. For
a > 0 andz > 0 one can show, by maximizing overthat
re” ¥ < i
ae
For A < m, we can use this inequality with = (m — \)
and get that

" 1
) < wgw%_n(m_»
1
(e=1)(m—N)

SinceX < m/2 we then have that

1"
< —
'O < (e —1L)m
The lemma now follows fron¥'(0) = 0, F'(0) = 0 and
F"(\) <2/(e—1)m. ]

Proof of Lemma 10: Let A = me/2. Lemmas 14 and 15

together imply that
)\2
exp<7(6 ~Tm — )\e)

ex 777162 — m_€2
Plae—D ™ 2

< 67777,62/3

PriMd > E[My ] +¢] <

Lemma 10 now follows by setting this probability equabto
and solving fofe. This completes the proof of Theoremm®.
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