
16

Decision Tree Approximations of Boolean Functions

Dinesh Mehta
MS 21, Department of Computer Science

The University of Tennessee Space Institute
Tullahoma, TN 37388-9700
dmehta@utsi.edu

Vijay Raghavan�

Box 1679-B, Computer Science Department
Vanderbilt University
Nashville, TN 37235

raghavan@vuse.vanderbilt.edu

Abstract

Decision trees are popular representations of Bool-
ean functions. We show that, given an alternative
representation of a Boolean functionf , say as a
read-once branching program, one can find a deci-
sion treeT which approximatesf to any desired
amount of accuracy. Moreover, the size of the
decision tree is at most that of the smallest deci-
sion tree which can representf and this construc-
tion can be obtained in quasi-polynomial time. We
also extend this result to the case where one has
access only to a source of random evaluations of
the Boolean functionf instead of a complete rep-
resentation. In this case, we show that a similar
approximation can be obtained with any specified
amount of confidence (as opposed to the absolute
certainty of the former case.) This latter result im-
plies proper PAC-learnability of decision trees un-
der the uniform distribution without using mem-
bership queries.

1 Introduction

Decision trees are popular representations of Boolean func-
tions. They form the basic inference engine in well-known
machine learning programs such as C4.5 [Q86, Q96]. Boolean
decision trees have also been used in the problem of per-
forming reliable computations in the presence of faulty com-
ponents [KK94] and in medical diagnosis. The popularity
of decision trees for representing Boolean functions may be
attributed to the following reasons:

� Universality: Decision trees can represent all Boolean
functions.

� Amenability to manipulation: Many useful operations
on Boolean functions can be performed efficiently in
time polynomial in the size of the decision tree rep-
resentation. In contrast, most such operations are in-
tractable under other popular representations. Table 1
gives a comparison of decision trees with DNF formu-
las and read-once branching programs.

�Supported by NSF grant 9820840.

The advantages of a decision tree representation motivate
the following problem:

Given an arbitrary representation of a Boolean function
f , find an equivalent representation of f as a decision tree
of as small a size as can be.

It is immediately evident that this problem is bound to be
hard as stated. Polynomial time solvability of this problem
would imply that satisfiability of CNF formulas can be de-
cided in polynomial time which is impossible unless P=NP.
We therefore consider a slightly different problem. Let us
say thatg is an�-approximation of f if the fraction of as-
signments on whichg andf differ in evaluation is at most
�.

Given an arbitrary representation of a Boolean function
f , find an �-approximation of f as a decision tree of as small
a size as can be.

In order not to fall into the same trap as before, we are
now interested in solving this problem efficiently but realis-
tically: that is, we may use time polynomial in the following
parameters:

1. The size of the given representation off .

2. The size of the smallest decision tree representation of
f for a given�.

3. The inverse of the desired error tolerance, i.e.,1=�.

Such approximations would be useful in all applications
where a small amount of error can be tolerated in return for
the gains that would accrue from having a decision tree rep-
resentation. Indeed this is the case for most applications in
machine learning and data mining. For example, one could
post-process the hypothesis output of a learning program and
convert it into a decision tree while ensuring that not much
error has been introduced by choosing a suitably small�.
Note here that one may use knowledge of special properties
of the representation scheme of the hypothesis in construct-
ing the decision tree approximation. Further note that one
may even construct a decision tree approximation for a de-
cision tree hypothesis! This would be useful in conjunction
with programs like C4.5 which output decision trees but do
not make special efforts to ensure that the output tree is prov-
ably the smallest it can be for a desired error tolerance. At the
expense of sacrificing a little more error, one could achieve
the desired minimization in such cases.



17

Table 1: The complexity of operations in different representation schemes

— DNF Formulas Read-Once Branching Decision Trees
Programs

Universality Yes Yes Yes
AND of 2 representations Polynomial timea Polynomial timea Polynomial timea

OR of 2 representations Polynomial timea Polynomial timea Polynomial timea

Complement of a representation Exponential timea Polynomial timea Polynomial timea

Deciding satisfiability Polynomial timea Polynomial timea Polynomial timea

Deciding unsatisfiability NP completeb Polynomial timea Polynomial timea

Deciding monotonicity co-NP completeb Open Polynomial time

Deciding equivalence co-NP completeb co-RPd Polynomial timee

Deciding symmetry co-NP completeb Polynomial time Polynomial time

Deciding relevance co-NP completeb Open Polynomial timee

of variables

Counting number of #P-completef Polynomial time Polynomial time

satisfying assignments

Making representation NP hardb co-RPd Polynomial timee

irredundant

Making representation NP hardb Open NP-hardg

minimum

Truth-table NP hardh Open Polynomial timei

minimization
a Straightforward from the definition of the representation scheme.
b Easy reduction from CNF-SATISFIABILITY.
 Proved in this paper.
d Is a result (or follows from one) in [BCW80].
e It is a folk theorem proves that decision trees are testable for equivalence in polynomial time; the other

results follow from this.
f Proved in [S75].
g Proved in [ZB98].
h A result of Masek cited in Garey and Johnson’s book [GJ79].
i Proved in [GLR99].

We first show that in the case of some well-known repre-
sentation schemes, small�-approximating decision trees can
be obtained inquasi-polynomial time. (A polynomial factor
of the first parameter listed above is multiplied by a factor
which involves an exponent logarithmic in the second and
third parameters.) These schemes are:

1. Decision trees

2. Ordered Binary Decision Diagrams

3. Read-once Branching Programs

4. O(logn)-height Branching Programs

5. Sat-j DNF formulas, for constantj

6. �-Boolean formulas

The third item above is a generalization of the first two, so
the result for the first two follows from the third. Our quasi-
polynomial time algorithm actually holds with more gener-
ality than for just these classes. Roughly speaking, all repre-
sentation schemes for which the number of satisfying assign-
ments of the input function under “small” projections can

be computed efficiently—a property we callsat-countable
in this paper—would come under the technique employed
here. Indeed, we present the algorithm in this more general
way and then argue that the required properties hold for all
the above schemes. It is worth emphasizing here that al-
though the time taken by our algorithm is quasi-polynomial,
the size of the decision tree approximation isnot: in fact, the
output decision tree has the smallest size thatany decision
tree of its height and level of approximation can have. In this
sense, it is optimal and certainly has size no larger than that
of the smallest decision tree which can represent the boolean
function being approximated.

We also consider the situation where onlysome evalua-
tions of a Boolean functionf are available. Given a sampleS
of such evaluations, we show that the previous algorithm can
be modified slightly to give a quasi-polynomial time algo-
rithm which produces a small�-approximating decision tree
over the sampleS. That is, the decision tree may disagree
with f in evaluating at most� � jSj assignments out ofS, for
any given�.

We argue that this latter result implies proper quasi-poly-
nomial time PAC-learnability of decision trees under the uni-
form distribution. Informally, the learning result may be in-



18

terpreted as follows. Compared to the absolute certainty of
the�-approximation in the first result, the learning result says
that if we are given access only to a source of random eval-
uations off (instead of a complete representation off ) then
the output of our algorithm will be an�-approximating deci-
sion tree with as much confidence as desired, but not absolute
certainty. This may be the only way to obtain decision tree
approximations for representation schemes like DNF formu-
las for which counting the number of satisfying assignments
is #P-complete [GJ79].

A novel feature of the learning algorithm is that it isnot
an Occam algorithm [BEHW87] unlike the ones known in
learning theory. This is because our algorithm may actually
make a few errors even on the training sample used. Con-
sequently the analysis of the sample complexity is a gen-
eralization of the ones normally used, and may be of some
independent interest.

The learning result can be compared with similar ones
in learning theory. Bshouty’s monotone theory based algo-
rithm [B95] can be deployed to learn decision trees under
any arbitrary but fixed distribution in polynomial time but
has the following drawbacks in comparison with our algo-
rithm: the algorithm uses membership queries and outputs
not a decision tree but a depth-3 formula. Similarly, Bshouty
and Mansour’s algorithm [BM95] does not output a decision
tree. Ehrenfeucht and Haussler [EH89] show that decision
trees of rankr are learnable in timenO(r) under any distribu-
tion. The rank of a decision treeT is the height of the largest
complete binary tree that can be embedded inT . Since a de-
cision tree ofm nodes has rank at mostlogm, at first glance,
this result would seem to be an improvement over the learn-
ing result of this paper since one could learnm node decision
trees in quasi-polynomial time under any distribution! The
difference is this: in learningm node decision trees overn
variables our algorithm would always produces a decision
tree of size no larger thanm using a sample of size at most
polynomial inm and the inverse of the error and confidence
parameters. In contrast, the algorithm of Ehrenfeucht and
Haussler may output a tree of sizenO(logm) using a sam-
ple of size quasi-polynomial inn;m and polynomial in the
inverse of the error and confidence parameters.

The rest of the paper is organized as follows. Section 2
contains definitions and lemmas used in the remaining sec-
tions. Section 3 has our algorithm for finding an�-approx-
imating decision tree given a sat-countable representation.
Section 4 contains the results on�-approximating decision
trees given only a source of random evaluations of a Boolean
function. We conclude with some open problems in Sec-
tion 5.

2 Preliminaries

Let f be a Boolean function over a setV = fv

1

; v

2

; : : : ; v

n

g

of n variables. A(total) assignment is obtained by setting
each of then variables to either 0 or 1; such an assignment
may be represented by ann-bit vector inf0; 1gn in the nat-
ural way. Asatisfying assignment� for f is one for which
f(�) = 1. The number of satisfying assignments forf is
denoted by℄f .

A partial assignment is obtained when only a subset of
variables inV is assigned values. A partial assignment may

be represented by a vector of lengthn each of whose ele-
ments is either 0, 1, or *. A vector element is * if the corre-
sponding variable was not assigned a value. Thus, the total
number of partial assignments is3n and the number of par-
tial assignments withk variables assigned values is

�

n

k

�

2

k.
The size of a partial vector�, denotedj�j, is the number
of elements in� assigned 0 or 1. Theempty partial vector,
denoted�, is the one in which all variables are assigned *.

The projection off under a partial assignment�, de-
notedf

�

, is the function obtained by “hardwiring” the val-
ues of the variables included in�. More precisely, given a
total assignment� and a partial assignment�, let�

�

denote
the total assignment obtained by setting each variable whose
value is not * in� to the value in� and each variable whose
value is * in � to the value in�. Then,f

�

is defined by
f

�

(�) = f(�

�

).
We are interested only inprojection-closed representa-

tion classes of Boolean functions, i.e., ones for which given
a representation for a Boolean functionf and any partial vec-
tor�, the Boolean functionf

�

can also be represented in the
class and, moreover, such a representation can be computed
in polynomial time. We say that a projection-closed repre-
sentation class is(polynomial-time) sat-countable if given a
representation forf , the value of℄f can be computed in time
polynomial in the size of the representation andn, the total
number of variables. Ifd is a representation of the function
f , we usejdj to denote the size ofd. Where the context as-
sures that there is no ambiguity, we treat a representation as
synonymous with the Boolean function being represented.

The error err(f; f

0

) of f with respect to another Bool-
ean functionf 0 defined over the same set ofn variables is
the total number of assignments� such thatf(�) 6= f

0

(�);
moreoverf is an�-approximation off 0 if

err(f; f

0

)

2

n

� �

We consider the following projection-closed representa-
tion classes of Boolean functions in this paper.

1. Decision Trees. A decision treeT is a binary tree where
the leaves are labeled either 0 or 1, and each internal
node is labeled with a variable. Given an assignment
� 2 f0; 1g

n, T (�) is evaluated by starting at the root
and iteratively applying the following rule, until a leaf is
reached: let the variable at the current node bex

i

; if the
value of� at positioni is 1 then branch right; otherwise
branch left. If the leaf reached is labeled 0 (resp. 1)
thenT (�) = 0 (resp. 1). Thesize of a decision tree is
its number of nodes.

2. Branching programs (BPs). A branching program is a
directed acyclic graph with a unique node of in-degree
0 (called theroot, and two nodes of out-degree 0 (called
leaves), one labeled 0 and the other labeled 1; each non-
leaf node of the graph contains a variable, and has out-
degree exactly two.

If every variable appears at most once on any root-leaf
path, then the branching program is calledread-once
(ROBP). Note that a decision tree can effectively be
considered to be an ROBP. Assigments are evaluated
following the same rule as for decision trees. Theheight



19

of a BP is the length of the longest path from the root to
a leaf node.

An ordered binary decision diagram (OBDD) is an
ROBP with the additional property that variables appear
in the same order on any path from root to leaf.

3. SAT-j DNF formulas: DNF formulas in which every as-
signment is satisfied by at mostj terms of the formula.

4. � formulas: Boolean formulas in which every variable
occurs at most once.

Proposition 1 Decision trees, OBDDs, ROBPs, BPs, SAT j-
DNF formulas, and � formulas are projection-closed.

Proof. For any BP, the projection under a partial vector
� can be computed as follows: redirect incoming edges for
each vertex labeled by a variable that is assigned a value in
� to the left (respectively, right) child of the vertex if that
variable is assigned the value 0 (respectively, 1) in�. Re-
cursively delete vertices with no incoming edges. By using
depth-first search, these steps can be achieved in linear time.
Note that if the BP is a decision tree, OBDD, ROBP, or ah-
height BP then the projection also belongs to the same class.

For SAT j-DNF and�-formulas, the projection can be
obtained by substituting the values for each assigned variable
in �. A 0 in a DNF term will result in the deletion of that
term, whereas a 1 results in the deletion of that variable from
the term. In a�-formula, appropriate Boolean algebra rules
are applied to eliminate the 1’s and 0’s so obtained. This is
accomplished in linear time in both cases.

Proposition 2 ROBPs andO(log n)-height BPs are sat-count-
able.

Proof. The number of satisfying assignments of an ROBP
f is computed as follows.

Traverse the nodes off in reverse topological order. Let
f(x) denote the sub-ROBP rooted at a nodex consisting of
all vertices that can be reached fromx and the edges joining
them. When a nodex is visited the fraction�

x

, 0 � �

x

�

1, of assignments off(x) that are satisfying assignments is
computed as follows. Ifx is a leaf then�

x

is the same (0
or 1) as the value of the leaf node; otherwisex is an internal
node and�

x

is �

y

+�

z

2

, wherey andz are the left and right
children ofx.

A simple inductive argument shows that on completion
�

r

, wherer is the root of the ROBP, is the fraction of satis-
fying assignments off . Consequently,℄f = �

r

� 2

n, where
n is the number of variables inf .

Next, letB be aO(log n) height BP representing a Bool-
ean functionf . First, construct a decision tree equivalent
to f by “spreading out”B by creating a separate copy of a
node whenever needed rather than sharing subfunctions as
in a branching program. Such a decision tree may not im-
mediately satisfy the “read-once” property, but it is easily
converted into one by eliminating subtrees under duplicated
variables along a path. The total number of nodes in this re-
sultant decision tree is at most2O(logn)

= n

O(1). Finally,
compute the number of satisfying assignments for the deci-
sion tree as described above for a ROBP.

The next two propositions are not used in the paper; they
are proved here simply in order to complete Table 1.

Proposition 3 Decision trees can be tested for monotonicity
in polynomial time.

Proof.

Let T be a given decision tree overn variables.
It is convenient to extend the partial order� defined over

the Boolean lattice to the set of partial vectors by:� � � if
for all i, �

i

= 1 implies that�
i

6= 0. For any partial vector
�, we will say thatT (�) = 0 (respectively 1) if for every
total vector� � �, T (�) = 0 (respectively 1).

Each leaf nodex in T determines a partial vectorp(x)
based on the assignment to variables on the path from the
root ofT to the leaf node. Let us say thatx is acounterexam-
ple to monotonicity ofT if there is a partial vector� � p(x)

such thatT (�) = 0 andx has a value of 1. The essential
observation is thatT is monotone if and only if no leaf ofT
is a counterexample to its monotonicity.

It is easy to test for monotonicity ofT using the above
observation: for each leaf nodex assigned the value 1, let
p

0

(x) be the partial vector obtained by setting to 1 only the
variables inp(x) assigned a 1 and leaving the remaining vari-
ables as *. If under the projectionp0(x) T is not identically 1,
thenx is a counterexample to monotonicity as demonstrated
by any path to 0 in the projection.

A Boolean functionf(v
1

; v

2

; : : : ; v

n

) is symmetric if
f(v

1

; v

2

; : : : ; v

n

) = f(v

0

1

; v

0

2

; : : : ; v

0

n

) for every permuta-
tion (v

0

1

; v

0

2

; : : : ; v

0

n

) of (v
1

; v

2

; : : : ; v

n

).

Proposition 4 ROBPs can be tested for symmetry in polyno-
mial time.

Proof.

This proof is inspired by the central idea in [BCW80].
Let f be any Boolean function over the set of variablesV =

fv

1

; v

2

; : : : ; v

n

g and letf+ denote the set of assignments
thatf evaluates to 1.

We first generalizef to be areal-valued function by
treatingV to be a set of real variables; more precisely re-
definef by:

f(v

1

; v

2

; : : : ; v

n

) =

X

�2f

+

 

Y

i:�

i

=1

v

i

�

Y

i:�

i

=0

(1� v

i

)

!

When the variables inV assume the values 0 and 1, the
value of the redefinition coincides with the value of the Bool-
ean function; so we do have a true generalization. As shown
in [BCW80], given a ROBP representation of the Boolean
functionf , the value of the real function on any real vector
overV can be computed in linear time by visiting the ROBP
in topological order.

Next, letg(x) = f(x; x; : : : ; x) and letR
k

; 0 � k � n



20

Table 2: System of Linear Equations for calculating jR
k

j

0

B

B

B

B

B

�

1 0 0 � � � 0

0 0 0 � � � 1

(1� 2)

n

2(1� 2)

n�1

2

2

(1� 2)

n�2

� � � 2

n

(1� 3)

n

3(1� 3)

n�1

3

2

(1� 3)

n�2

� � � 3

n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(1� n)

n

n(1� n)

n�1

n

2

(1� n)

n�2

� � � n

n

1

C

C

C

C

C

A

0

B

B

B

B

�

jR

0

j

jR

1

j

jR

2

j

...
jR

n

j

1

C

C

C

C

A

=

0

B

B

B

B

�

g(0)

g(1)

g(2)

...
g(n)

1

C

C

C

C

A

be the set of assignments inf+ with preciselyk ones. Then,

g(x) = f(x; x; : : : ; x)

=

X

�2f

+

 

Y

i:�

i

=1

x �

Y

i:�

i

=0

(1� x)

!

=

n

X

k=0

X

�2R

k

x

k

(1� x)

n�k

=

n

X

k=0

jR

k

jx

k

(1� x)

n�k

Now computing the values ofg(0); g(1); : : : ; g(n) as
mentioned above by using the ROBP representation off and
treatingjR

k

j as variables leads to the system of linear equa-
tions in Table 2.

It’s easily shown that the rank of the coefficient matrix
is n + 1; therefore the system admits a unique solution for
hjR

0

j; jR

1

j; : : : ; jR

n

ji. Finally, observe that the Boolean
functionf is symmetric if and only ifjR

k

j is either 0 or
�

n

k

�

for all values ofk; 0 � k � n.

From the above proof, it follows that we can decide sym-
metry for OBDDs and decision trees also in polynomial time.

Proposition 5 SAT j-DNF formulas are sat-countable.

Proof. Let us say that two termst andt0 areconflicting if t
contains a literall andt0 contains a literal�l. Theconsensus
of two non-conflicting termst andt0, denotedtt0 is the term
obtained from the union of all the literals int andt0; if t and
t

0 are conflicting, then their consensus is 0.
The definition of a SAT-j DNF formulaf implies that in

every setft
1

; t

2

; : : : ; t

j+1

g of j + 1 terms of the formula,
there must be at least two conflicting terms. Therefore, using
the principle of inclusion and exclusion,

℄f =

X

t2f

℄t�

X

t;t

0

2f

℄(tt

0

) +

X

t;t

0

;t

00

2f

℄(tt

0

t

00

)� � � �

Here, for any termt of k literals ℄t is simply 2n�k. From
the comment above, this sum needs to consider at most the
consensus ofj terms off . For constantj, the total time
O(jf j

j

) for the computation is a polynomial.

Proposition 6 �-formulas are sat-countable.

Proof. Let f be a�-formula over a set ofn variables. If
f is the constant 1, then℄f = 2

n and if f is the constant
0, then℄f = 0; if f is a term containing a single literal,
then℄f = 2

n�1. Otherwisef can be written either asf
1

f

2

or f
1

+ f

2

, wheref
1

and f
2

are�-formulas over disjoint
sets ofn

1

andn
2

variables respectively. Then, it is easy
to argue that℄f = ℄f

1

� ℄f

2

if f = f

1

f

2

, and that℄f =

2

n

� (2

n

1

� ℄f

1

)(2

n

2

� ℄f

2

) if f = f

1

+ f

2

. Recursive
application of these rules ensures that℄f can be computed in
O(jf j+ n) time.

3 Finding a Decision Tree Approximation

The main result of this section is an algorithm for construct-
ing a decision tree�-approximation of any Boolean func-
tion f represented in a projection-closed sat-countable class.
The heart of our algorithm is a procedureFIND which is
a generalization of the dynamic programming method used
in [GLR99] for truth-table minimization of decision trees.

FIND works as follows. Givenf , a Boolean function
overn variables, a height parameterh and a size parameter
m, it builds precisely one tree from the setT

�;k

, for each
partial vector� of size at mosth and for eac hk; 0 � k � m.
(Here,T

�;k

is the set of all decision tree representations of
the functionf

�

of size at mostk and height at mosth� j�j
that have minimum error with respect tof

�

and among all
such trees, are of minimum size.) The desired approximation
will therefore be the tree constructed for the setT

�;w

, where
w = minfm; 2

h

� 1g.
The algorithm employs a two-dimensional arrayP [�; k℄

to hold a tree inT
�;k

. A tree in theP array will be repre-
sented by a triple of the form (root, left subtree, right sub-
tree), unless it contains a single leaf node, in which case it
will be represented by the leaf’s value. For a partial vector
�, the notation�:v  1 (�:v  0, respectively) denotes the
partial vector obtained by extending� by setting the variable
v to 1 (0, respectively).

Lemma 7 Algorithm FIND is correct, i.e., given a sat-count-
able representation of a Boolean function f , a height param-
eter h, and a size parameterm, FIND outputs a decision tree
T

0 of height at most h and size at most m such that among all
such decision trees, err(T 0, f ) is minimum; if there is more
than one decision tree with the same minimum error, then
jT

0

j is of minimum size among these trees.

Proof. We show by induction onl
�

= h � j�j and k
that P [�; k℄ is a tree inT

�;k

, for all 0 � j�j � h and



21

FIND(boolFunctionRepf , int m, int h)
01. foreach � such thatj�j � h do

02. if ℄(f
�

) > 2

n�j�j�1 then P [�; 0℄ 1;
03. else P [�; 0℄ 0;
04.
05. for i = h� 1 to 0 do
06. foreach � such thatj�j = i do

07. foreach k = 1 to minf2

h�j�j

� 1;mg do
08. P [�; k℄ = P [�; k � 1℄;
09. foreach variablev not used in� and eachk0; k00 such thatk0 + k

00

+ 1 = k do
10. errV err((v; P [�:v  0; k

0

℄; P [�:v  1; k

00

℄); f

�

) ;
11. if err(P [�; k℄; f

�

) > errV then
12. P [�; k℄ (v; P [�:v  0; k

0

℄; P [�:v  1; k

00

℄);
13. else if err(P [�; k℄; f

�

) = errV then
14. if (jP [�:v  0; k

0

℄j+ jP [�:v  1; k

00

℄j+ 1) < jP [�; k℄j then
15. P [�; k℄ (v; P [�:v  0; k

0

℄; P [�:v  1; k

00

℄);
16. output P [�;m℄.
end

Figure 1: Algorithm FIND.

0 � k � minf2

h�j�j

� 1;mg. For k = 0 and any�, the
tree must be a leaf with value 0 or 1, depending on which
value yields the minimum error relative tof

�

. Lines 2 and
3 of AlgorithmFIND examine the hypercube corresponding
to f

�

and determine whether the majority of assignments are
0 or 1. This is also true for any� such thatl

�

= 0 since
l

�

= 0) j�j = h) k = 0.
Assume thatP [�; k

0

℄ has been correctly computed for all
� such thatl

�

< l

�

and allk0 in [0;minf2

h�j�j

� 1;mg℄.
Also assume that allP [�; k

0

℄ have been correctly computed
for all k0 in [0; k � 1℄. We show thatFIND causes a tree
in T

�;k

to be placed inP [�; k℄. If the size of the trees
in T

�;k

is less thank, then, from the induction hypothe-
sis, P [�; k℄ is initialized to a tree inT

�;k

in line 8. Lines
9-15 cannot then modifyP [�; k℄ and the algorithm is cor-
rect. Therefore, let the size of the trees inT

�;k

be ex-
actly k. Let Opt be any tree inT

�;k

and letv be its root.
Now v must be a variable that is not assigned a value in
�. Let the sizes ofOpt’s left and right subtrees bek

0

and
k

1

, respectively. Observe thatk
0

and k

1

are one of the
(k

0

; k

00

) pairs examined in line 9. Let�
0

= �:v  0

and let�
1

= �:v  1. From the induction hypothe-
sis,err(P [�

0

; k

0

℄; f

�

0

) � err(Left subtree ofOpt; f
�

0

) and
err(P [�

1

; k

1

℄; f

�

1

) � err(Right subtree ofOpt; f
�

1

). Since
the error of a tree is the sum of the errors of its two subtrees,
the algorithm finds a tree forP [�; k℄ which has error at most
that ofOpt and size at most that ofOpt. The lemma follows.

Lemma 8 Let p(jf j; n) denote the time complexity for com-
puting the number of satisfying assignments of an arbitrary
projection of a given sat-countable function f . The time
complexity of FIND is O(n

O(h)

(m

2

+ p(jf j; n))).

Proof. Sincef is a sat-countable representation, the time
required by line 2 isO(p(jf j; n)n). The number of partial

vectors examined in line 1 is�h

i=0

�

n

i

�

2

i

= O(n

O(h)

). Thus,
lines 1-4 takeO(p(jf j; n)n

O(h)

) time. Lines 5 and 6 cause
the sameO(n

O(h)

) partial vectors to be examined. The vari-
ablek (line 7) takes on at mostm values, there are at mostn
possibilities forv andm possible combinations ofk0 andk00

in line 9.
The complexity of lines 10-15 is dominated byO(1) er-

ror computations between a decision treeT in P and the
sat-countable functionf

�

. Each such error computation
can be implemented as follows. For any leaf nodex in
T , let � be the partial vector corresponding to the evalu-
ation path inT leading up tox. The contribution to the
total error of the partial vector� is then either℄((f

�

)

�

) if
the leafx has value 0 and2n�j�j�j�j

� ℄((f

�

)

�

) if it has
value 1. The total errorerr(T; f

�

) is obtained by sum-
ming the errors computed in this fashion over each leaf
of T . The complexity of this computation is bounded by
O(p(jf j; n)m) and that of lines 5-15 and hence Algorithm
FIND is bounded byO(n

O(h)

m

3

p(jf j; n)). As is common
in dynamic programming algorithms, memoizing helps to
reduce the overall complexity. Observe that the complex-
ity of error computation can be reduced by maintaining a
second two-dimensional arrayE each of whose elements
contains the error of the corresponding element in arrayP .
FirstE[�; 0℄ can be computed inO(p(jf j; n)) time in lines
2 and 3. Then the remainingE[�; k℄s are computed ev-
ery timeP [�; k℄ is updated inO(1) time by simply sum-
ming the error of the left and right subtrees ofP [�; k℄. With
this time-saving modification, the time complexity becomes
O((p(jf j; n) +m

2

)n

O(h)

).

Lemma 9 Let T be an m-node decision tree. Then there
exists a decision tree T

� of height at most h = log(

m+1

4�

)

and at most m nodes such that T � is an �-approximation of
T .



22

Proof. RestrictT to heighth by converting any nodex
at levelh to either 0 or 1 depending on whether there are
more 0’s or 1’s respectively in the hypercube defined by the
path leading tox. Call this treeT �. Clearly T � has no
more thanm nodes and the error ofT � is confined to the
hypercubes of the converted nodesx at levelh in the origi-
nal tree. Since there are at mostdm=2e such nodes and the
error of each node is at most2n�h�1, it follows thatT � is a
dm=2e � 2

n�h�1

=2

n

�

m+1

4�2

h

-approximation ofT . Substitut-
ing h = log(

m+1

4�

) now yields the desired result.

Theorem 10 Given a sat-countable Boolean function repre-
sentation f whose smallest decision treerepresentation has
at most m nodes and any error parameter �, we can find a
decision tree T 0 of at most m nodes which �-approximates f
in time polynomial in jf j and nlogm=�.

Proof. Givenf , we use the standard doubling trick to deter-
mine inO(logm

�

) iterations of the algorithm the least value
m

� such thatFIND(f , m�, log((m�

+ 1)=4�)) returns a de-
cision tree which�-approximatesf . By Lemma 9,m� is at
mostm, the size of the smallest decision tree which can rep-
resentf . The correctness and time complexity then follow
from Lemmas 7 and 8 respectively.

4 Learning Decision Trees under the Uniform

Distribution

We show that the algorithm of the previous section can be ex-
tended to learn decision trees under the uniform distribution.
As we remarked in the introduction, this means that, given
access to a uniformly distributed sample of evaluations of
a boolean functionf an error parameter� and a confidence
parameterÆ, our algorithm will output a a decision treeT
of at mostm nodes, wherem is the least number of nodes
needed to representf as a decision tree and such thatT �-
approximatesf with confidence at least1�Æ. The algorithm
takes time polynomial innlog(m=�) and log(1=Æ), i.e., it is
a quasi-polynomial time algorithm. However, the sample-
complexity of the algorithm is only a modest polynomial in
the parametersm, logn, log(1=Æ) andlog(1=�).

We use the following additional terminology to prove the
results of this section. LetT

m;h;n

denote the class of deci-
sion trees overn variables that have height at mosth and
size at mostm. For any decision treeT , let T �

(h) be the
tree of heighth obtained fromT by converting all non-leaf
nodes of depthh in T to leaf nodes with classification 0 or
1, depending on whether the majority of the assignments in
the corresponding hypercube off are classified as 0 or 1,
respectively.

Recall that for any two Boolean functionsf
1

, f
2

overn
variables,err(f

1

; f

2

) denotes the number of assignments�

for which f

1

(�) 6= f

2

(�); by extension, ifS is a sample
of classified examples of the formh�; bi where� is an as-
signment andb 2 f0; 1g, thenerr(S; f) = err(f; S) is the
number of examples inS of the formh�; bi wheref(�) 6= b.

We need the following well-known inequalities.

Proposition 11 (Chernoff Bounds) LetX
1

; X

2

; : : : ; X

r

de-
note the outcomes of r identical, independent Bernoulli tri-
als with Prob [X

i

= 1℄ = p, for all i; 1 � i � r. Let
R =

P

r

i=1

X

i

. Then E[R℄ = pr and for 0 �  � 1,

� Prob[R � (p+ )r℄ � e

�2r

2

, and

� Prob[R � (p� )r℄ � e

�2r

2

.

Lemma 12 Given a sample S of classified examples of a
boolean function of the form h�; bi where � is an assign-
ment and b 2 f0; 1g, a height parameter h, and a size pa-
rameter m, a decision tree D of height at most h and size at
most m can be computed such that among all such decision
trees, err(D, S) is minimum, and among all such minimum
error trees, D has minimum size. The computation requires
O(n

O(h)

(m

2

+ jSj))).

Proof. Let S
�

denote the assignments inS that extend the
partial assignment�. For a given�, S

�

can be computed
in O(jSjn) time. Modify the condition of Line 2 of Algo-
rithm FIND so that number of assignments ofS

�

whose val-
ues are 1 and 0 are compared. The modified Line 2 takes
O(jSjn) time. All references tof

�

(lines 10, 11, and 13)
are replaced byS

�

. Error computations can be carried out
as described in the proof of Lemma 8. Each error computa-
tion takesO(jSjm) time. Since the rest of the algorithm is
unchanged, the complexity is obtained by replacingp(jf j; n)

by jSj. Note that this is also true of the modified algorithm
proposed in the proof of Lemma 8. Correctness follows from
Lemma 7.

Theorem 13 Given:

� A uniformly distributed sample S of size

r =

8

�

2

�

m ln(4n) + ln

�

4

Æ

��

of examples of an m-node decision tree T over n vari-
ables,

� An error parameter �, 0 < � < 1, and

� A confidence parameter Æ, 0 < Æ < 1,

we can find a decision tree D in T
m;h;n

with h = log(

m+1

2�

)

in timeO(rm

2

n

O(h)

) such that with confidence at least 1�Æ,
the error of D in approximating T is at most �, i.e.,

Prob[err(D;T ) < �℄ � 1� Æ:

Proof.

We execute algorithm FIND modified to deal with a sam-
pleS as described in Lemma 12 with the parametersm and

h as above. Let�0 = (m+1)2

�h

4

=

�

2

.



23

Call a decision treeT 0 in T
m;h;n

bad if err(T 0

; T ) � �.
For anyfixed bad decision treeT 0,

Prob[FIND outputsT 0

℄

� Prob[T

0

2 T

m;h;n

and has least error over sampleS℄

� Prob[err(S; T

0

) � err(S; T

�

(h))℄

� Prob[err(S; T

0

) �

�

0

+ �

2

jSj or err(S; T �

(h)) �

�

0

+ �

2

jSj℄

� Prob[err(S; T

0

) �

�

0

+ �

2

jSj℄

+ Prob[err(S; T

�

(h)) �

�

0

+ �

2

jSj℄

� e

�2r

h

(���

0

)

2

i

2

+ e

�2r

h

(���

0

)

2

i

2

= 2e

�

r�

2

8

Here, the last inequality follows from Chernoff bounds
applied to the number of errors inS of the treesT 0 and
T

�

(h).
Now the probabilityp that FIND outputsany bad treeT 0

in T
m;h;n

is certainly at mostjT
m;h;n

j � 2e

�

r�

2

8 . The number
of binary trees on at mostm nodes is at most2 � 4m and so
the number of decision trees of at mostm nodes is at most
2 � (4n)

m, which also is an upper bound onT
m;h;n

. Con-
sequently, for our choice ofr in the proposition (and after
a little bit of arithmetic), the probabilityp turns out to be at
mostÆ.

5 Conclusions

Given a sat-countable representation of a boolean functionor
a uniformly distributed sample of evaluations of a boolean
function, this paper presents a quasi-polynomial algorithm
for computing a decision tree of smallest size that approx-
imates this function. Is it possible to achieve this in poly-
nomial time? Failing this, is it possible to obtain a decision
tree whose size is within a polynomial factor of the smallest
approximating decision tree in polynomial time?

Finding a decision tree of smallest size equivalent to a
given one is NP-hard [ZB98]. This opens the question of
whether at least a polynomial approximation of the smallest
equivalent decision tree is possible in polynomial time. The
ideas in this paper do not seem enough to answer this ques-
tion, but there is some hope that combining these ideas with
the results of Ehrenfeucht and Haussler [EH89] will work.
As a matter of fact, their results can already be used to give
a quasi-polynomial approximation to the smallest decision
tree equivalent toany projection-closed representation which
allows testing for tautology and satisfiability in polynomial
time in quasi-polynomial time. This is done in the following
way.

We consider the sampleS in the Ehrenfeucht and Haus-
sler algorithm to be all2n assignments. However, we avoid
using time polynomial in the sample size, by noting that the
operations on the sample in the algorithm consist only of:

1. Checking if all assignments inS evaluate to either 0 or
1, and

2. Computing a new sampleS0 obtained by projecting
given variable to 0 or 1.

Doing these operations in time polynomial in the given rep-
resentation converts their algorithm into one whose complex-
ity has an added factor of the formO(n

O(r)

), wherer is the
smallest rank of any equivalent decision tree; sincer cannot
exceedO(logm), wherem is the size of the smallest equiv-
alent decision tree, we get the desired quasi-polynomial ap-
proximation.

Finally, can the ideas of this paper be combined with
those of Ehrenfeucht and Haussler to properly learn decision
trees under arbitrary distributions with or without member-
ship queries?

6 Acknowledgment

We thank the anonymous referee who suggested the sharper
bound onT

m;h;n

which led to an improvement in the sample
complexity in Theorem 13.

References

[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M.K. Warmuth. Occam’s Razor.Information
Processing Letters, 24:377–380.

[BCW80] M. Blum, A. Chandra, M. Wegman. Equiva-
lence of Free Boolean Graphs can be Decided
Probabilistically in Polynomial Time.Informa-
tion Processing Letters, 10:80–82, 1980.

[B95] N.H. Bshouty. Exact Learning Boolean Func-
tions via the Monotone Theory.Information
and Computation, 123(1):146–153, 1995.

[BM95] N.H. Bshouty and Y. Mansour. Simple Learn-
ing Algorithms for Decision Trees and Multi-
variate Polynomials.Proceedings of the Foun-
dations of Computer Science (FOCS), 304–
311, 1995.

[EH89] A. Ehrenfeucht and D. Haussler. Learning
Decision Trees from Random Examples.In-
formation and Computation, 82(3):231–246,
1989.

[GJ79] M.R. Garey and D.S. Johnson. Computers and
Intractability, a Guide to the Theory of NP-
completeness. W.H. Freeman and Co., New
York, 1979.

[GLR99] D. Guijarro, V. Lavı́n, and V. Raghavan. Exact
Learning when Irrelevant Variables Abound.
Information Processing Letters, 70:233–239,
1999.

[HR76] L. Hyafil and R. Rivest. Constructing Optimal
Binary Decision Trees is NP-complete.Infor-
mation Processing Letters, 5:15–17, 1976.

[KK94] C. Kenyon and V. King. On boolean decision
trees with faulty nodes.Random Structures
and Algorithms, 5(3):453-464, 1994.

[Q86] J.R. Quinlan. Induction of Decision Trees.Ma-
chine Learning, 1(1):81–106, 1986.

[Q96] J.R. Quinlan. Learning Decision Tree Classi-
fiers.Computing Surveys, 28(1):71–72, 1996.



24

[S75] J. Simon. On Some Central Problems in Com-
putational Complexity.Ph.D. Thesis, Cornell
University, Ithaca, New York, 1975.

[ZB98] H. Zantema and H. Bodlaender. Finding Small
Equivalent Decision Trees is Hard. Technical
Report UU-CS-1999-31, Department of Com-
puter Science, Utrecht University, Utrecht, the
Netherlands, 1999.


