Improper Learning for Non-Stochastic Control
Max Simchowitz, Karan Singh, Elad Hazan
Subject areas: Reinforcement learning, Online learning, Planning and control
Presented in: Session 3B, Session 3D
[Zoom link for poster in Session 3B], [Zoom link for poster in Session 3D]
Abstract:
We consider the problem of controlling a possibly unknown linear dynamical system with adversarial perturbations, adversarially chosen convex loss functions, and partially observed states, known as non-stochastic control. We introduce a controller parametrization based on the denoised observations, and prove that applying online gradient descent to this parametrization yields a new controller which attains sublinear regret vs. a large class of closed-loop policies. In the fully-adversarial setting, our controller attains an optimal regret bound of $\sqrt{T}$-when the system is known, and, when combined with an initial stage of least-squares estimation, $T^{2/3}$ when the system is unknown; both yield the first sublinear regret for the partially observed setting. \n\n Our bounds are the first in the non-stochastic control setting that compete with \emph{all} stabilizing linear dynamical controllers, not just state feedback. Moreover, in the presence of semi-adversarial noise containing both stochastic and adversarial components, our controller attains the optimal regret bounds of $\mathrm{poly}(\log T)$ when the system is known, and $\sqrt{T}$ when unknown. To our knowledge, this gives the first end-to-end $\sqrt{T}$ regret for online Linear Quadratic Gaussian controller, and applies in a more general setting with adversarial losses and semi-adversarial noise.