On Avoiding the Union Bound When AnsweringMultiple Differentially Private Queries
Badih Ghazi , Ravi Kumar , Pasin Manurangsi
Session: Robustness, Privacy and Fairness (A)
Session Chair: Thomas Steinke
Poster: Poster Session 2
Abstract:
In this work, we study the problem of answering $k$ queries with $(\epsilon, \delta)$-differential privacy, where each query has sensitivity one. We give an algorithm for this task that achieves an expected $\ell_\infty$ error bound of $O(\frac{1}{\epsilon}\sqrt{k \log \frac{1}{\delta}})$, which is known to be tight (Steinke and Ullman, 2016).
A very recent work by Dagan and Kur (2020) provides a similar result, albeit via a completely different approach. One difference between our work and theirs is that our guarantee holds even when $\delta < 2^{-\Omega(k/(\log k)^8)}$ whereas theirs does not apply in this case. On the other hand, the algorithm of Dagan and Kur (2020) has a remarkable advantage that the $\ell_{\infty}$ error bound of $O(\frac{1}{\epsilon}\sqrt{k \log \frac{1}{\delta}})$ holds not only in expectation but always (i.e., with probability one) while we can only get a high probability (or expected) guarantee on the error.