Closure Properties for Private Classification and Online Prediction
Noga Alon, Amos Beimel, Shay Moran, Uri Stemmer
Subject areas: Privacy, fairness, Online learning
Presented in: Session 1A, Session 1C
[Zoom link for poster in Session 1A], [Zoom link for poster in Session 1C]
Abstract:
Let H be a class of boolean functions and consider a composed class H' that is derived from H using some arbitrary aggregation rule (for example, H' may be the class of all 3-wise majority-votes of functions in H). We upper bound the Littlestone dimension of H' in terms of that of H. As a corollary, we derive closure properties for online learning and private PAC learning.\n\nThe derived bounds on the Littlestone dimension exhibit an undesirable exponential dependence. For private learning, we prove close to optimal bounds that circumvents this suboptimal dependency. The improved bounds on the sample complexity of private learning are derived algorithmically via transforming a private learner for the original class H to a private learner for the composed class H'. Using the same ideas we show that any (proper or improper) private algorithm that learns a class of functions H in the realizable case (i.e., when the examples are labeled by some function in the class) can be transformed to a private algorithm that learns the class H in the agnostic case.